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Preface
This publication is the first part of a book that deals with mathematical modelling of processes,
their dynamical properties and dynamical characteristics. The need of investigation of dynamical
characteristics of processes comes from their use in process control. The second part of the book
will deal with process identification, optimal, and adaptive control.

The aim of this part is to demonstrate the development of mathematical models for process
control. Detailed explanation is given to state-space and input-output process models.

In the chapter Dynamical properties of processes, process responses to the unit step, unit
impulse, harmonic signal, and to a random signal are explored.

The authors would like to thank a number of people who in various ways have made this book
possible. Firstly we thank to M. Sabo who corrected and polished our Slovak variant of English
language. The authors thank to the reviewers prof. Ing. M. Alex́ık, CSc. and doc. Ing. A. Lavrin,
CSc. for comments and proposals that improved the book. The authors also thank to Ing. L’.
Čirka, Ing. Š. Kožka, Ing. F. Jelenčiak and Ing. J. Dzivák for comments to the manuscript that
helped to find some errors and problems. Finally, the authors express their gratitude to doc. Ing.
M. Huba, CSc., who helped with organisation of the publication process.

Parts of the book were prepared during the stays of the authors at Ruhr Universität Bochum
that were supported by the Alexander von Humboldt Foundation. This support is very gratefully
acknowledged.

Bratislava, March 2000
J. Mikleš
M. Fikar
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Prof. Mikleš cooperates actively with industry. He was president of the Slovak Society of
Cybernetics and Informatics (member of the International Federation of Automatic Control -
IFAC). He has been chairman and member of the program committees of many international
conferences.

M. Fikar obtained his Ing. degree at the Faculty of Chemical Technology (CHTF), Slovak
University of Technology in Bratislava in 1989 and Dr. in 1994. Since 1989 he has been with
the Department of Process Control CHTF STU. He also worked at Technical University Lyngby,
Technische Universität Dortmund, CRNS-ENSIC Nancy, Ruhr Universität Bochum, and others.

The publication activity of Dr. Fikar includes more than 60 works and he is co-author of
one book. In his scientific work he deals with predictive control, constraint handling, system
identification, optimisation, and process control.



Contents

1 Introduction 11
1.1 Topics in Process Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2 An Example of Process Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2.1 Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2.2 Steady-State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2.3 Process Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2.4 Dynamical Properties of the Process . . . . . . . . . . . . . . . . . . . . . . 14
1.2.5 Feedback Process Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.2.6 Transient Performance of Feedback Control . . . . . . . . . . . . . . . . . . 15
1.2.7 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.2.8 Feedforward Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.3 Development of Process Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.4 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2 Mathematical Modelling of Processes 21
2.1 General Principles of Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2 Examples of Dynamic Mathematical Models . . . . . . . . . . . . . . . . . . . . . . 23

2.2.1 Liquid Storage Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.2 Heat Transfer Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2.3 Mass Transfer Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.2.4 Chemical and Biochemical Reactors . . . . . . . . . . . . . . . . . . . . . . 37

2.3 General Process Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.4 Linearisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.5 Systems, Classification of Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.6 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3 Analysis of Process Models 55
3.1 The Laplace Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.1.1 Definition of The Laplace Transform . . . . . . . . . . . . . . . . . . . . . . 55
3.1.2 Laplace Transforms of Common Functions . . . . . . . . . . . . . . . . . . . 56
3.1.3 Properties of the Laplace Transform . . . . . . . . . . . . . . . . . . . . . . 58
3.1.4 Inverse Laplace Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.1.5 Solution of Linear Differential Equations by Laplace Transform Techniques 64

3.2 State-Space Process Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.2.1 Concept of State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.2.2 Solution of State-Space Equations . . . . . . . . . . . . . . . . . . . . . . . 67
3.2.3 Canonical Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.2.4 Stability, Controllability, and Observability of Continuous-Time Systems . . 71
3.2.5 Canonical Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.3 Input-Output Process Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.3.1 SISO Continuous Systems with Constant Coefficients . . . . . . . . . . . . 81



6 CONTENTS

3.3.2 Transfer Functions of Systems with Time Delays . . . . . . . . . . . . . . . 89
3.3.3 Algebra of Transfer Functions for SISO Systems . . . . . . . . . . . . . . . 92
3.3.4 Input Output Models of MIMO Systems - Matrix of Transfer Functions . . 94
3.3.5 BIBO Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
3.3.6 Transformation of I/O Models into State-Space Models . . . . . . . . . . . 97
3.3.7 I/O Models of MIMO Systems - Matrix Fraction Descriptions . . . . . . . . 101

3.4 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
3.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4 Dynamical Behaviour of Processes 109
4.1 Time Responses of Linear Systems to Unit Impulse and Unit Step . . . . . . . . . 109

4.1.1 Unit Impulse Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.1.2 Unit Step Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.2 Computer Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
4.2.1 The Euler Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
4.2.2 The Runge-Kutta method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
4.2.3 Runge-Kutta method for a System of Differential Equations . . . . . . . . . 119
4.2.4 Time Responses of Liquid Storage Systems . . . . . . . . . . . . . . . . . . 123
4.2.5 Time Responses of CSTR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.3 Frequency Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
4.3.1 Response of the Heat Exchanger to Sinusoidal Input Signal . . . . . . . . . 133
4.3.2 Definition of Frequency Responses . . . . . . . . . . . . . . . . . . . . . . . 134
4.3.3 Frequency Characteristics of a First Order System . . . . . . . . . . . . . . 139
4.3.4 Frequency Characteristics of a Second Order System . . . . . . . . . . . . . 141
4.3.5 Frequency Characteristics of an Integrator . . . . . . . . . . . . . . . . . . . 143
4.3.6 Frequency Characteristics of Systems in a Series . . . . . . . . . . . . . . . 143

4.4 Statistical Characteristics of Dynamic Systems . . . . . . . . . . . . . . . . . . . . 146
4.4.1 Fundamentals of Probability Theory . . . . . . . . . . . . . . . . . . . . . . 146
4.4.2 Random Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
4.4.3 Stochastic Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
4.4.4 White Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
4.4.5 Response of a Linear System to Stochastic Input . . . . . . . . . . . . . . . 159
4.4.6 Frequency Domain Analysis of a Linear System with Stochastic Input . . . 162

4.5 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
4.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

Index 167



List of Figures

1.2.1 A simple heat exchanger. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2.2 Response of the process controlled with proportional feedback controller for a

step change of disturbance variable ϑv. . . . . . . . . . . . . . . . . . . . . . . . 16
1.2.3 The scheme of the feedback control for the heat exchanger. . . . . . . . . . . . . 17
1.2.4 The block scheme of the feedback control of the heat exchanger. . . . . . . . . . 17

2.2.1 A liquid storage system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2.2 An interacting tank-in-series process. . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2.3 Continuous stirred tank heated by steam in jacket. . . . . . . . . . . . . . . . . . 27
2.2.4 Series of heat exchangers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.2.5 Double-pipe steam-heated exchanger and temperature profile along the exchanger

length in steady-state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.2.6 Temperature profile of ϑ in an exchanger element of length dσ for time dt. . . . 30
2.2.7 A metal rod. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.2.8 A scheme of a packed countercurrent absorption column. . . . . . . . . . . . . . 33
2.2.9 Scheme of a continuous distillation column . . . . . . . . . . . . . . . . . . . . . 35
2.2.10 Model representation of i-th tray. . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.2.11 A nonisothermal CSTR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.5.1 Classification of dynamical systems. . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.7.1 A cone liquid storage process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.7.2 Well mixed heat exchanger. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.7.3 A well mixed tank. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.7.4 Series of two CSTRs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.7.5 A gas storage tank. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.1.1 A step function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.1.2 An original and delayed function. . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.1.3 A rectangular pulse function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.2.1 A mixing process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.2.2 A U-tube. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.2.3 Time response of the U-tube for initial conditions (1, 0)T . . . . . . . . . . . . . . 74
3.2.4 Constant energy curves and state trajectory of the U-tube in the state plane. . . 74
3.2.5 Canonical decomposition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.3.1 Block scheme of a system with transfer function G(s). . . . . . . . . . . . . . . . 82
3.3.2 Two tanks in a series. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.3.3 Block scheme of two tanks in a series. . . . . . . . . . . . . . . . . . . . . . . . . 84
3.3.4 Serial connection of n tanks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.3.5 Block scheme of n tanks in a series. . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.3.6 Simplified block scheme of n tanks in a series. . . . . . . . . . . . . . . . . . . . 87
3.3.7 Block scheme of a heat exchanger. . . . . . . . . . . . . . . . . . . . . . . . . . . 88
3.3.8 Modified block scheme of a heat exchanger. . . . . . . . . . . . . . . . . . . . . . 88
3.3.9 Block scheme of a double-pipe heat exchanger. . . . . . . . . . . . . . . . . . . . 92
3.3.10 Serial connection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92



8 LIST OF FIGURES

3.3.11 Parallel connection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
3.3.12 Feedback connection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
3.3.13 Moving of the branching point against the direction of signals. . . . . . . . . . . 94
3.3.14 Moving of the branching point in the direction of signals. . . . . . . . . . . . . . 94
3.3.15 Moving of the summation point in the direction of signals. . . . . . . . . . . . . 95
3.3.16 Moving of the summation point against the direction of signals. . . . . . . . . . 95
3.3.17 Block scheme of controllable canonical form of a system. . . . . . . . . . . . . . 99
3.3.18 Block scheme of controllable canonical form of a second order system. . . . . . . 100
3.3.19 Block scheme of observable canonical form of a system. . . . . . . . . . . . . . . 101

4.1.1 Impulse response of the first order system. . . . . . . . . . . . . . . . . . . . . . 110
4.1.2 Step response of a first order system. . . . . . . . . . . . . . . . . . . . . . . . . 112
4.1.3 Step responses of a first order system with time constants T1, T2, T3. . . . . . . . 112
4.1.4 Step responses of the second order system for the various values of ζ. . . . . . . 114
4.1.5 Step responses of the system with n equal time constants. . . . . . . . . . . . . . 115
4.1.6 Block scheme of the n-th order system connected in a series with time delay. . . 115
4.1.7 Step response of the first order system with time delay. . . . . . . . . . . . . . . 115
4.1.8 Step response of the second order system with the numerator B(s) = b1s + 1. . . 116
4.2.1 Simulink block scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
4.2.2 Results from simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
4.2.3 Simulink block scheme for the liquid storage system. . . . . . . . . . . . . . . . . 124
4.2.4 Response of the tank to step change of q0. . . . . . . . . . . . . . . . . . . . . . . 125
4.2.5 Simulink block scheme for the nonlinear CSTR model. . . . . . . . . . . . . . . . 130
4.2.6 Responses of dimensionless deviation output concentration x1 to step change of qc.132
4.2.7 Responses of dimensionless deviation output temperature x2 to step change of qc. 132
4.2.8 Responses of dimensionless deviation cooling temperature x3 to step change of qc. 132
4.3.1 Ultimate response of the heat exchanger to sinusoidal input. . . . . . . . . . . . 135
4.3.2 The Nyquist diagram for the heat exchanger. . . . . . . . . . . . . . . . . . . . . 138
4.3.3 The Bode diagram for the heat exchanger. . . . . . . . . . . . . . . . . . . . . . 138
4.3.4 Asymptotes of the magnitude plot for a first order system. . . . . . . . . . . . . 139
4.3.5 Asymptotes of phase angle plot for a first order system. . . . . . . . . . . . . . . 140
4.3.6 Asymptotes of magnitude plot for a second order system. . . . . . . . . . . . . . 142
4.3.7 Bode diagrams of an underdamped second order system (Z1 = 1, Tk = 1). . . . . 142
4.3.8 The Nyquist diagram of an integrator. . . . . . . . . . . . . . . . . . . . . . . . . 143
4.3.9 Bode diagram of an integrator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
4.3.10 The Nyquist diagram for the third order system. . . . . . . . . . . . . . . . . . . 145
4.3.11 Bode diagram for the third order system. . . . . . . . . . . . . . . . . . . . . . . 145
4.4.1 Graphical representation of the law of distribution of a random variable and of

the associated distribution function . . . . . . . . . . . . . . . . . . . . . . . . . 147
4.4.2 Distribution function and corresponding probability density function of a contin-

uous random variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
4.4.3 Realisations of a stochastic process. . . . . . . . . . . . . . . . . . . . . . . . . . 152
4.4.4 Power spectral density and auto-correlation function of white noise . . . . . . . . 158
4.4.5 Power spectral density and auto-correlation function of the process given by (4.4.102)

and (4.4.103) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
4.4.6 Block-scheme of a system with transfer function G(s). . . . . . . . . . . . . . . . 162



List of Tables

3.1.1 The Laplace transforms for common functions . . . . . . . . . . . . . . . . . . . 59

4.2.1 Solution of the second order differential equation . . . . . . . . . . . . . . . . . . 123
4.3.1 The errors of the magnitude plot resulting from the use of asymptotes. . . . . . 140





Chapter 1

Introduction

This chapter serves as an introduction to process control. The aim is to show the necessity of
process control and to emphasize its importance in industries and in design of modern technologies.
Basic terms and problems of process control and modelling are explained on a simple example of
heat exchanger control. Finally, a short history of development in process control is given.

1.1 Topics in Process Control

Continuous technologies consist of unit processes, that are rationally arranged and connected in
such a way that the desired product is obtained effectively with certain inputs.

The most important technological requirement is safety. The technology must satisfy the
desired quantity and quality of the final product, environmental claims, various technical and op-
erational constraints, market requirements, etc. The operational conditions follow from minimum
price and maximum profit.

Control system is the part of technology and in the framework of the whole technology which is
a guarantee for satisfaction of the above given requirements. Control systems in the whole consist
of technical devices and human factor. Control systems must satisfy

• disturbance attenuation,

• stability guarantee,

• optimal process operation.

Control is the purposeful influence on a controlled object (process) that ensures the fulfillment
of the required objectives. In order to satisfy the safety and optimal operation of the technology
and to meet product specifications, technical, and other constraints, tasks and problems of control
must be divided into a hierarchy of subtasks and subproblems with control of unit processes at
the lowest level.

The lowest control level may realise continuous-time control of some measured signals, for
example to hold temperature at constant value. The second control level may perform static opti-
misation of the process so that optimal values of some signals (flows, temperatures) are calculated
in certain time instants. These will be set and remain constant till the next optimisation instant.
The optimisation may also be performed continuously. As the unit processes are connected, their
operation is coordinated at the third level. The highest level is influenced by market, resources,
etc.

The fundamental way of control on the lowest level is feedback control. Information about
process output is used to calculate control (manipulated) signal, i.e. process output is fed back to
process input.
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There are several other methods of control, for example feed-forward. Feed-forward control is
a kind of control where the effect of control is not compared with the desired result. In this case
we speak about open-loop control. If the feedback exists, closed-loop system results.

Process design of “modern” technologies is crucial for successful control. The design must be
developed in such a way, that a “sufficiently large number of degrees of freedom” exists for the
purpose of control. The control system must have the ability to operate the whole technology or
the unit process in the required technology regime. The processes should be “well” controllable
and the control system should have “good” information about the process, i.e. the design phase
of the process should include a selection of suitable measurements. The use of computers in the
process control enables to choose optimal structure of the technology based on claims formulated
in advance. Projectants of “modern” technologies should be able to include all aspects of control
in the design phase.

Experience from control praxis of “modern” technologies confirms the importance of assump-
tions about dynamical behaviour of processes and more complex control systems. The control
centre of every “modern” technology is a place, where all information about operation is collected
and where the operators have contact with technology (through keyboards and monitors of control
computers) and are able to correct and interfere with technology. A good knowledge of technology
and process control is a necessary assumption of qualified human influence of technology through
control computers in order to achieve optimal performance.

All of our further considerations will be based upon mathematical models of processes. These
models can be constructed from a physical and chemical nature of processes or can be abstract.
The investigation of dynamical properties of processes as well as whole control systems gives rise
to a need to look for effective means of differential and difference equation solutions. We will
carefully examine dynamical properties of open and closed-loop systems. A fundamental part of
each procedure for effective control design is the process identification as the real systems and
their physical and chemical parameters are usually not known perfectly. We will give procedures
for design of control algorithms that ensure effective and safe operation.

One of the ways to secure a high quality process control is to apply adaptive control laws.
Adaptive control is characterised by gaining information about unknown process and by using the
information about on-line changes to process control laws.

1.2 An Example of Process Control

We will now demonstrate problems of process dynamics and control on a simple example. The
aim is to show some basic principles and problems connected with process control.

1.2.1 Process

Let us assume a heat exchanger shown in Fig. 1.2.1. Inflow to the exchanger is a liquid with a
flow rate q and temperature ϑv. The task is to heat this liquid to a higher temperature ϑw. We
assume that the heat flow from the heat source is independent from the liquid temperature and
only dependent from the heat input ω. We further assume ideal mixing of the heated liquid and
no heat loss. The accumulation ability of the exchanger walls is zero, the exchanger holdup, input
and output flow rates, liquid density, and specific heat capacity of the liquid are constant. The
temperature on the outlet of the exchanger ϑ is equal to the temperature inside the exchanger.
The exchanger that is correctly designed has the temperature ϑ equal to ϑw. The process of heat
transfer realised in the heat exchanger is defined as our controlled system.

1.2.2 Steady-State

The inlet temperature ϑv and the heat input ω are input variables of the process. The outlet
temperature ϑ is process output variable. It is quite clear that every change of input variables
ϑv , ω results in a change of output variable ϑ. From this fact follows direction of information
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Figure 1.2.1: A simple heat exchanger.

transfer of the process. The process is in the steady state if the input and output variables remain
constant in time t.

The heat balance in the steady state is of the form

qρcp(ϑ
s − ϑs

v) = ωs (1.2.1)

where

ϑs is the output liquid temperature in the steady state,

ϑs
v is the input liquid temperature in the steady state,

ωs is the heat input in the steady state,

q is volume flow rate of the liquid,

ρ is liquid density,

cp is specific heat capacity of the liquid.

ϑs
v is the desired input temperature. For the suitable exchanger design, the output temperature

in the steady state ϑs should be equal to the desired temperature ϑw. So the following equation
follows

qρcp(ϑw − ϑs
v) = ωs. (1.2.2)

It is clear, that if the input process variable ωs is constant and if the process conditions change,
the temperature ϑ would deviate from ϑw. The change of operational conditions means in our case
the change in ϑv . The input temperature ϑv is then called disturbance variable and ϑw setpoint
variable.

The heat exchanger should be designed in such a way that it can be possible to change the
heat input so that the temperature ϑ would be equal to ϑw or be in its neighbourhood for all
operational conditions of the process.

1.2.3 Process Control

Control of the heat transfer process in our case means to influence the process so that the output
temperature ϑ will be kept close to ϑw. This influence is realised with changes in ω which is
called manipulated variable. If there is a deviation ϑ from ϑw, it is necessary to adjust ω to
achieve smaller deviation. This activity may be realised by a human operator and is based on the
observation of the temperature ϑ. Therefore, a thermometer must be placed on the outlet of the
exchanger. However, a human is not capable of high quality control. The task of the change of
ω based on error between ϑ and ϑw can be realised automatically by some device. Such control
method is called automatic control.
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1.2.4 Dynamical Properties of the Process

In the case that the control is realised automatically then it is necessary to determine values of ω
for each possible situation in advance. To make control decision in advance, the changes of ϑ as
the result of changes in ω and ϑv must be known. The requirement of the knowledge about process
response to changes of input variables is equivalent to knowledge about dynamical properties of
the process, i.e. description of the process in unsteady state. The heat balance for the heat transfer
process for a very short time ∆t converging to zero is given by the equation

(qρcpϑvdt + ωdt) − (qρcpϑdt) = (V ρcpdϑ), (1.2.3)

where V is the volume of the liquid in the exchanger. The equation (1.2.3) can be expressed in
an abstract way as

(inlet heat) − (outlet heat) = (heat accumulation)

The dynamical properties of the heat exchanger given in Fig. 1.2.1 are given by the differential
equation

V ρcp
dϑ

dt
+ qρcpϑ = qρcpϑv + ω, (1.2.4)

The heat balance in the steady state (1.2.1) may be derived from (1.2.4) in the case that dϑ
dt = 0.

The use of (1.2.4) will be given later.

1.2.5 Feedback Process Control

As it was given above, process control may by realised either by human or automatically via control
device. The control device performs the control actions practically in the same way as a human
operator, but it is described exactly according to control law. The control device specified for the
heat exchanger utilises information about the temperature ϑ and the desired temperature ϑw for
the calculation of the heat input ω from formula formulated in advance. The difference between
ϑw and ϑ is defined as control error. It is clear that we are trying to minimise the control error.
The task is to determine the feedback control law to remove the control error optimally according
to some criterion. The control law specifies the structure of the feedback controller as well as its
properties if the structure is given.

The considerations above lead us to controller design that will change the heat input propor-
tionally to the control error. This control law can be written as

ω(t) = qρcp(ϑw − ϑs
v) + ZR(ϑw − ϑ(t)) (1.2.5)

We speak about proportional control and proportional controller. ZR is called the proportional
gain. The proportional controller holds the heat input corresponding to the steady state as long
as the temperature ϑ is equal to desired ϑw. The deviation between ϑ and ϑw results in nonzero
control error and the controller changes the heat input proportionally to this error. If the control
error has a plus sign, i.e. ϑ is greater as ϑw, the controller decreases heat input ω. In the opposite
case, the heat input increases. This phenomenon is called negative feedback. The output signal
of the process ϑ brings to the controller information about the process and is further transmitted
via controller to the process input. Such kind of control is called feedback control. The quality of
feedback control of the proportional controller may be influenced by the choice of controller gain
ZR. The equation (1.2.5) can be with the help of (1.2.2) written as

ω(t) = ωs + ZR(ϑw − ϑ(t)). (1.2.6)
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1.2.6 Transient Performance of Feedback Control

Putting the equation (1.2.6) into (1.2.4) we get

V ρcp
dϑ

dt
+ (qρcp + ZR)ϑ = qρcpϑv + ZRϑw + ωs. (1.2.7)

This equation can be arranged as

V

q

dϑ

dt
+

qρcp + ZR

qρcp
ϑ = ϑv +

ZR

qρcp
ϑw +

1

qρcp
ωs. (1.2.8)

The variable V/q = T1 has dimension of time and is called time constant of the heat exchanger.
It is equal to time in which the exchanger is filled with liquid with flow rate q. We have assumed
that the inlet temperature ϑv is a function of time t. For steady state ϑs

v is the input heat given
as ωs. We can determine the behaviour of ϑ(t) if ϑv, ϑw change. Let us assume that the process
is controlled with feedback controller and is in the steady state given by values of ϑs

v, ω
s, ϑs. In

some time denoted by zero, we change the inlet temperature with the increment ∆ϑv . Idealised
change of this temperature may by expressed mathematically as

ϑv(t) =

{

ϑs
v + ∆ϑv t ≥ 0

ϑs
v t < 0

(1.2.9)

To know the response of the process with the feedback proportional controller for the step
change of the inlet temperature means to know the solution of the differential equation (1.2.8).
The process is at t = 0 in the steady state and the initial condition is

ϑ(0) = ϑw. (1.2.10)

The solution of (1.2.8) if (1.2.9), (1.2.10) are valid is given as

ϑ(t) = ϑw + ∆ϑv
qρcp

qρcp + ZR
(1 − e

−
qρcp+ZR

qρcp

q
V

t
) (1.2.11)

The response of the heat transfer process controlled with the proportional controller for the
step change of inlet temperature ϑv given by Eq. (1.2.9) is shown in Fig. 1.2.2 for several values
of the controller gain ZR. The investigation of the figure shows some important facts. The outlet
temperature ϑ converges to some new steady state for t → ∞. If the proportional controller
is used, steady state error results. This means that there exists a difference between ϑw and ϑ
at the time t = ∞. The steady state error is the largest if ZR = 0. If the controller gain ZR

increases, steady state error decreases. If ZR = ∞, then the steady state error is zero. Therefore
our first intention would be to choose the largest possible ZR. However, this would break some
other closed-loop properties as will be shown later.

If the disturbance variable ϑv changes with time in the neighbourhood of its steady state value,
the choice of large ZR may cause large control deviations. However, it is in our interest that the
control deviations are to be kept under some limits. Therefore, this kind of disturbance requires
rather smaller values of controller gain ZR and its choice is given as a compromise between these
two requirements.

The situation may be improved if the controller consists of a proportional and integral part.
Such a controller may remove the steady state error even with smaller gain.

It can be seen from (1.2.11) that ϑ(t) cannot grow beyond limits. We note however that the
controlled system was described by the first order differential equation and was controlled with a
proportional controller.

We can make the process model more realistic, for example, assuming the accumulation ability
of its walls or dynamical properties of temperature measurement device. The model and the
feedback control loop as well will then be described by a higher order differential equation. The
solution of such a differential equation for similar conditions as in (1.2.11) can result in ϑ growing
into infinity. This case represents unstable response of the closed loop system. The problem of
stability is usually included into the general problem of control quality.
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ϑw+ ∆ϑv

∞ZR =

V/q

t
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ϑ
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2= ρq  cZR
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p

Figure 1.2.2: Response of the process controlled with proportional feedback controller for a step
change of disturbance variable ϑv .

1.2.7 Block Diagram

In the previous sections the principal problems of feedback control were discussed. We have not
dealt with technical issues of the feedback control implementation.

Consider again feedback control of the heat exchanger in Fig. 1.2.1. The necessary assumptions
are i) to measure the outlet temperature ϑ and ii) the possibility of change of the heat input ω.
We will assume that the heat input is realised by an electrical heater.

If the feedback control law is given then the feedback control of the heat exchanger may be
realised as shown in Fig. 1.2.3. This scheme may be simplified for needs of analysis. Parts of the
scheme will be depicted as blocks. The block scheme in Fig. 1.2.3 is shown in Fig. 1.2.4. The
scheme gives physical interconnections and the information flow between the parts of the closed
loop system. The signals represent physical variables as for example ϑ or instrumentation signals
as for example m. Each block has its own input and output signal.

The outlet temperature is measured with a thermocouple. The thermocouple with its trans-
mitter generates a voltage signal corresponding to the measured temperature. The dashed block
represents the entire temperature controller and m(t) is the input to the controller. The controller
realises three activities:

1. the desired temperature ϑw is transformed into voltage signal mw,

2. the control error is calculated as the difference between mw and m(t),

3. the control signal mu is calculated from the control law.

All three activities are realised within the controller. The controller output mu(t) in volts is the
input to the electric heater producing the corresponding heat input ω(t). The properties of each
block in Fig. 1.2.4 are described by algebraic or differential equations.

Block schemes are usually simplified for the purpose of the investigation of control loops. The
simplified block scheme consists of 2 blocks: control block and controlled object. Each block of
the detailed block scheme must be included into one of these two blocks. Usually the simplified
control block realizes the control law.
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Figure 1.2.3: The scheme of the feedback control for the heat exchanger.
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Figure 1.2.4: The block scheme of the feedback control of the heat exchanger.
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1.2.8 Feedforward Control

We can also consider another kind of the heat exchanger control when the disturbance variable ϑv

is measured and used for the calculation of the heat input ω. This is called feedforward control.
The effect of control is not compared with the expected result. In some cases of process control it
is necessary and/or suitable to use a combination of feedforward and feedback control.

1.3 Development of Process Control

The history of automatic control began about 1788. At that time J. Watt developed a revolution
controller for the steam engine. An analytic expression of the influence between controller and
controlled object was presented by Maxwell in 1868. Correct mathematical interpretation of
automatic control is given in the works of Stodola in 1893 and 1894. E. Routh in 1877 and
Hurwitz in 1895 published works in which stability of automatic control and stability criteria were
dealt with. An important contribution to the stability theory was presented by Nyquist (1932).
The works of Oppelt (1939) and other authors showed that automatic control was established as
an independent scientific branch.

Rapid development of discrete time control began in the time after the second world war. In
continuous time control, the theory of transformation was used. The transformation of sequences
defined as Z-transform was introduced independently by Cypkin (1950), Ragazzini and Zadeh
(1952).

A very important step in the development of automatic control was the state-space theory,
first mentioned in the works of mathematicians as Bellman (1957) and Pontryagin (1962). An
essential contribution to state-space methods belongs to Kalman (1960). He showed that the
linear-quadratic control problem may be reduced to a solution of the Riccati equation. Paralel to
the optimal control, the stochastic theory was being developed.

It was shown that automatic control problems have an algebraic character and the solutions
were found by the use of polynomial methods (Rosenbrock, 1970).

In the fifties, the idea of adaptive control appeared in journals. The development of adaptive
control was influenced by the theory of dual control (Feldbaum, 1965), parameter estimation
(Eykhoff, 1974), and recursive algorithms for adaptive control (Cypkin, 1971).

The above given survey of development in automatic control also influenced development in
process control. Before 1940, processes in the chemical industry and in industries with similar
processes, were controlled practically only manually. If some controller were used, these were only
very simple. The technologies were built with large tanks between processes in order to attenuate
the influence of disturbances.

In the fifties, it was often uneconomical and sometimes also impossible to build technologies
without automatic control as the capacities were larger and the demand of quality increased. The
controllers used did not consider the complexity and dynamics of controlled processes.

In 1960-s the process control design began to take into considerations dynamical properties
and bindings between processes. The process control used knowledge applied from astronautics
and electrotechnics.

The seventies brought the demands on higher quality of control systems and integrated process
and control design.

In the whole process control development, knowledge of processes and their modelling played
an important role.

The development of process control was also influenced by the development of computers. The
first ideas about the use of digital computers as a part of control system emerged in about 1950.
However, computers were rather expensive and unreliable to use in process control. The first use
was in supervisory control. The problem was to find the optimal operation conditions in the sense
of static optimisation and the mathematical models of processes were developed to solve this task.
In the sixties, the continuous control devices began to be replaced with digital equipment, the so
called direct digital process control. The next step was an introduction of mini and microcomputers
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in the seventies as these were very cheap and also small applications could be equipped with them.
Nowadays, the computer control is decisive for quality and effectivity of all modern technology.
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K. Rörentrop. Entwicklung der modernen Regelungstechnik. Oldenbourg-Verlag, München, 1971.

H. Unbehauen. Regelungstechnik I. Vieweg, Braunschweig/Wiesbaden, 1986.
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W. Oppelt. Kleines Handbuch technischer Regelvorgänge. Verlag Chemie, Weinhein, 1972.

T. W. Weber. An Introduction to Process Dynamics and Control. Wiley, New York, 1973.

F. G. Shinskey. Process Control Systems. McGraw-Hill, New York, 1979.



Index

amplitude, 134
analysis

frequency, 133

BASIC, 119
Bezout identity, 103
block diagram, 16
Bode diagram, 137

C language, 120
canonical decomposition, 80
canonical form

controllable, 97
observable, 100

characteristics
frequency, 133
statistical, 146

column
distillation, 34
packed absorption, 32

connection
feedback, 93
parallel, 92
serial, 92

control
error, 14
feedback, 14
feedforward, 18
law, 14
proportional, 14
steady state error, 15

control device, 14
controllability, 76

complete, 76
controlled object, 12
controller

proportional, 14
gain, 14

correlation coefficient, 151
covariance, 151
covariance matrix, 151
cross-power spectral density, 156

derivation operator, 81

equation

algebraic, 39
differential, 39

set, 39
solution, 64

Lyapunov, 75
output, 41
state, 39, 41
state balance, 22
state space, 67

balance, 67
solution, 67

Euler identity, 135
Euler method, 117
expected value, 153

feedback
negative, 14

Fourier
transform, 96

Fourier expansion, 134
Fourier law, 32
fraction

partial, 63
polynomial

matrix, 101
frequency

transfer function matrix, 96
frequency response

magnitude, 136, 137
phase, 136
phase angle, 137

frequency transfer function, 136
frequency transfer function matrix, 136
function

auto-correlation, 153
auto-covariance, 153
correlation, 153
cross-correlation, 155
cumulative distribution, 147
dirac delta, 62
distribution, 147
exponential, 57
Lyapunov, 74
negative definite, 75
positive definite, 74



168 INDEX

positive semidefinite, 75
probability density, 150
ramp, 57
step, 56

unit, 56
transfer, 81
trigonometric, 58
unit impulse, 62
weighting, 109

gain, 111

heat exchanger
jacketed, 26

impossible event, 146

Laplace
transform, 55

convolution, 60
derivatives, 58
integral, 60
inverse, 56, 63
properties, 58
time delay, 61
unit impulse, 62

linearisation, 44
method, 44

MATLAB, 120
matrix

auto-covariance, 154
eigenvalues, 70
exponential, 69
frequency transfer function, 96
fundamental, 69
impulse responses, 94
observability, 79
polynomial, 101

common divisor, 103
coprime, 103
degree, 101
determinant degree, 102
division algorithm, 104
greatest common divisor, 103
irreducibility, 103
left fraction, 102
rank, 102
relatively prime, 103
right fraction, 102
spectral factorisation, 104
stable, 102
unimodular, 102

rational
proper, 96

strictly proper, 96
state transition, 69
system, 69, 76
transfer function, 94, 95

method
Euler, 117
Runge-Kutta, 118

mixing
ideal, 22

model
batch, 21
continuous, 21
empirical, 21
empirical-theoretical, 21
input output, 81

MIMO, 94
realisation, 95

linear, 44
mathematical, 21
theoretical, 21

moment
m-th, 150

central, 150
second, 150

norm
vector, 72

normal distribution, 150
Nyquist diagram, 137

observability, 78
matrix, 79

physical realisability, 82
poles, 96
polynomial

characteristic, 76
polynomial matrix

fraction, 101
power spectral density, 156
probability, 146

conditional, 146
density, 152
joint density, 150
law of distribution, 147
theory, 146

probability density, 150
process, 12

analysis, 55
automatic control, 13
control, 13

feedback, 14
distributed parameters, 22
dynamical model, 21



INDEX 169

dynamical properties, 14
ergodic, 154
general model, 39
heat transfer, 26
liquid storage, 23

interacting tank, 25
single tank, 23

lumped parameters, 22
mass transfer, 32
mathematical model, 21
model

input-output, 55
non-stationary, 154
random, 152
response, 14, 15
space discretisation, 41
state space model, 95
stationary, 154
stochastic, 152

expected value, 153
realisation, 152
variance, 153
vector mean value, 154

random event, 146
reachability, 77

complete, 77
reactor

biochemical, 37, 39
chemical, 37
CSTR, 37

realisation
minimum, 95

Runge-Kutta method, 118

Simulink, 120
stability, 71

asymptotic, 72, 75
linear system, 75

asymptotic in large, 72, 75
BIBO, 97
external, 97
Lyapunov, 72, 75
system

continuous, 71
state

concept, 48, 67
observability, 78, 79

complete, 78
reconstructibility, 78

complete, 78
steady, 12

deviation, 44
unsteady, 14

state plane, 74
state space, 74

representation, 67
state trajectory, 74
steady state, 12
step function, 111
step response, 111
sure event, 146
system

abstract, 48
autonomous, 71
causal, 110
continuous, 48

stability, 71
deterministic

MIMO, 48
SISO, 48

dynamical, 49
equilibrium state, 71
forced, 71
free, 69, 71
linear, 48
nonautonomous, 71
order, 95
physical, 48
poles, 96
representation

input-output, 55
state space, 55

response, 109, 111
stochastic, 49
unit impulse response, 109
zeros, 96

Taylor series, 46
Taylor theorem, 44
time constant, 15, 111
time delay, 61
transfer function, 81

algebra, 92
frequency, 133
matrix, 94

transform
Fourier, 136

transformation
canonical, 70

value
expected, 148
random, 146

variable
disturbance, 13, 40
expected value, 148
input, 12



170 INDEX

manipulated, 13, 40
deviation, 45

output, 12, 40
random, 146

continuous, 149
discrete, 146
standard deviation, 150

setpoint, 13
state, 22, 40

deviation, 45
variance, 148

variance, 153

white noise, 157

zeros, 96


	1 Introduction
	1.1 Topics in Process Control
	1.2 An Example of Process Control
	1.2.1 Process
	1.2.2 Steady-State
	1.2.3 Process Control
	1.2.4 Dynamical Properties of the Process
	1.2.5 Feedback Process Control
	1.2.6 Transient Performance of Feedback Control
	1.2.7 Block Diagram
	1.2.8 Feedforward Control

	1.3 Development of Process Control
	1.4 References

	Index



