Individualised Approaches in Control Education
Courses with Large Number of Students

M. Fikar, R. Valo, L’. Čirka, M. Bakošová, M. Huba

Institute of Information Engineering, Automation, and Mathematics
Faculty of Chemical and Food Technology

2Department of Automation and Control
Faculty of Electrical Engineering and Information Technology

Slovak University of Technology in Bratislava

ACE 2006, Madrid, June 22
Contents

1. Motivation
2. Course
3. E-learning
 - Assignments
 - Tests
4. Example of a Test
5. Conclusions

M. Fikar (STU) Courses with Large Number of Students ACE 2006, Madrid, June 22
Automatic Control Fundamentals

- 26 hours of lectures
- 26 hours of computer labs
- 250 students
- 2001 – the 3rd most negative in the students ranking
- 2006 – the 5th most positive in the students ranking
- self-learning package
Components of Internet Suite

- study materials, presentations, files for download, information about the course,
- basic operations using MWS (polynomials, matrices, pzmap, step),
- Internet version of all course topic problems,
- on-line tests and preparation for written tests,
- Moodle e-learning portal for gradebooks, attendances, quizzes, etc.

Contents of Exercises

- differential equations
- transfer function algebra
- step responses
- poles and zeros
- modelling of chemical processes
- closed-loop stability
- PID controller design
- process control
General part: Open Source LMS Moodle (unique assignments, discussions, gradebook, etc)

Scientific part: generation of individual tests, assignments
Contents

1. Motivation
2. Course
3. E-learning
 - Assignments
 - Tests
4. Example of a Test
5. Conclusions
Assignment Module

MATLAB scripts → HTML files

1. random input values for one student
2. solution and intermediary results for one student
3. A script to gather 1, 2 for all students
4. A script to generate HTML files for students and teachers
Contents

1 Motivation

2 Course

3 E-learning
 - Assignments
 - Tests

4 Example of a Test

5 Conclusions
Generation of Tests

1. MATLAB
2. XML File
3. XSLT Transformation
 1. \LaTeX produces PDF
 2. XHTML for www
 3. LMS format for Moodle
Generation of Tests /2
Problem and Solution

The closed loop system consists of a controlled system with transfer function of the form $G(s) = \frac{b_0}{s^2 + a_1 s + a_0}$ and a PID controller of the form $G_c(s) = P + \frac{I}{s} + Ds$. If the setpoint value is changed at $t = 0$ from 0 to w, the permanent tracking error is given as:

$$e(\infty) = \begin{cases} w \left(1 - \frac{b_0 P}{a_0 + b_0 P}\right) & \text{if } I = 0 \\ 0 & \text{otherwise} \end{cases}$$
MATLAB Computational Engine
XML File
\textbf{Problem 1}. The closed loop system consists of a controlled system with transfer function of the form $G(s) = \frac{3}{s^2 + 5s + 7}$ and a controller of the form $G_c(s) = 9 + 5s$. If the setpoint value is changed at $t=0$ from 0 to 10, the permanent tracking error is given as

- 2.06
- -1.15
- 0.13
- 0.29
- no other choice is correct
\LaTeX{} produces versions both for students and for teachers

Problem 1. The closed loop system consists of a controlled system with transfer function of the form \(G(s) = \frac{3}{s^2 + 5s + 7} \) and a controller of the form \(G_c(s) = 9 + 5s \). If the setpoint value is changed at \(t=0 \) from 0 to 10, the permanent tracking error is given as

\[\sqrt{2.06} \]

- -1.15
- 0.13
- 0.29
- no other choice is correct
Problem 1.)

The closed loop system consists of a controlled system with transfer function of the form \(G(s) = \frac{3}{s^2 + 5s + 7} \) and a controller of the form \(G_c(s) = 9 + 5s \). If the setpoint value is changed at \(t=0 \) from 0 to 10, the permanent tracking error is given as

- no other choice is correct
- 0.29
- -1.15
- 2.06
- 0.13
The closed loop system consists of a controlled system with transfer function of the form
\[G(s) = \frac{3}{s^2 + 5s + 7} \] and a controller of the form
\[G_c(s) = 9 + 5s. \] If the setpoint value is changed at \(t=0 \) from 0 to 10, the permanent tracking error is given as

Answer:
- a. 0.29
- b. 0.13
- c. 2.06
- d. no other choice is correct
- e. -1.15

Correct
Conclusions

- Heavy use of ICT in Education improves ranking of the course
- Individual problems for students
- Reduction (removal) of manual and repetitive tasks
- Productivity increase
- Significant amount of time and work needed to develop the course