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Abstract: Nonlinear model predictive control (NMPC) based on nonequidistant
sampling rate has been proposed (Halldorsson, 2002; Halldorsson et al., 2004).
This implementation can achieve significant computational savings compared to
classical methods without noticeable deterioration of the control quality. On the
other side, classical stability results cannot be aplicable as the standard MPC
feasibility assumption can be broken.
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1. INTRODUCTION

Receding-Horizon (RH) control, also known as
Model Predictive Control (MPC), can in general
be formulated as a repeated solution of an open-
loop optimal control, where the dynamics and
constraints of the underlying system are taken
into account as optimization boundary conditions.
This simple idea behind MPC, as well as its
practical properties, make it easy to implement
system nonlinearities and constraints directly into
the control law. Optimal control trajectory over
some finite horizon is approximated as a piece-
wise constant sequence of which the first part is
applied to controlled process.

Nonlinear model predictive control (NMPC) fol-
lows the success of linear MPC. Various strategies
have been developed that guarantee stability of
the closed-loop system, see for example Allgöwer

et al. (1999); Morari and Lee (1999); De Nicolao
et al. (2000); Mayne et al. (2000).

Besides stability, another major issue with NMPC
is its computational burden. To lower the com-
plexity of optimization problems it is desirable
to apply a small number of optimizable vari-
ables. When considering nonlinear models it is
straightforward to distinguish between the predic-
tion horizon and the number of optimised vari-
ables. Clearly, the best performance is attainable
if these two coincide, but this will take place at the
cost of excessive computational burden. Various
approaches have been suggested at this point,
mostly based on selecting a low number of op-
timised variables. In Bemporad (1998) a reference
governor is implemented which searches for a fu-
ture setpoint trajectory parameterised by a single
optimised parameter. Another approach inspired
by linear MPC maintains constant predicted con-
trol actions beyond a certain point in the con-



trol horizon, or uses as a reference the output
of a suitable linear controller beyond that point.
Following this scheme Zheng (2000) and Magni
et al. (2001) optimise the nonlinear control actions
only m steps into the future, while assuming the
remaining future control strategy is generated by
a linear controller. For this case some nice con-
vergence features have been proven for arbitrary
m.

This contribution studies reduction of computa-
tions by nonequidistant parametrisation of control
steps as described in Halldorsson (2002); Halldors-
son et al. (2004). The sampling frequency is high
at the beginning of the optimal control trajectory
and decreases exponentially towards the optimisa-
tion horizon. This type of parametrisation lowers
computational load significantly without notice-
able loss of performance.

However, this special parametrisation does not
obey the standard properties for feasibility ar-
gument needed to prove stability by the existing
approaches.

We focus in this contribution on both properties
and discuss possible ways for guaranteing stabil-
ity.

2. STANDARD PROBLEM SETUP

We consider a standard NMPC problem with
a nonlinear continuous-time system with control
applied at discrete sampling instants.

The time-invariant nonlinear continuous-time sys-
tem is given as

ẋ(t) = f(x(t), u(t)), (1)

where x(t) ∈ Rx is the state vector, u(t) ∈ Ru is
the input vector, f is a twice differentiable non-
linear function locally Lipschitz continuous satis-
fying f (0,0) = 0. The state and input vectors are
subject to the constraints

x(t) ∈ X, u(t) ∈ U, t ≥ 0, (2)

where X and U are compact sets of Rx and Ru

respectively, both enclosing the origin represent-
ing the steady-state of the system. Considering (1)
and (2) as boundary constraints a general objec-
tive function to be minimised is defined as

J(x(t), u(·)) = G[x(t+T )]+

∫ t+T

t

F [x(τ), u(τ)]dτ,

(3)
where T is the prediction horizon length, and
with slight abuse of notation x(τ), u(τ) for
τ ∈ [t, t + T ] are the future predicted values of
x(τ) and u(τ), respectively. The term u(·) de-
notes the input trajectory ofver the horizon. F >
0, G ≥ 0 are general functions describing the
desired objective and G serves as the terminal

penalty term. For stability reasons it may be re-
quired to augment this optimisation problem with
the constraint x(t + T ) ∈ Ω, where Ω is a compact
set defined according to the applied stability proof
scheme.

Stability of the closed-loop system can be estab-
lished based on feasibility and decrease of the
value function (the minimal value of the cost for
the state x: V (x) = J(u∗, x)) as follows:

Theorem 1. (Findeisen et al. (2003)). Suppose that

• the terminal region Ω ∈ X is closed with

0 ∈ Ω and that G > 0
• ∀x ∈ Ω there exists an admissible input

uΩ(τ) such that x(τ) ∈ Ω and

∂G

∂x
f(x(τ), uΩ(τ)) + F (x(τ), uΩ(τ)) ≤ 0

∀τ ∈ [0, T ] (4)

• the NMPC open-loop optimal control prob-

lem is feasible for t = 0.

Then the closed-loop system is asymptotically

stable and the region of attraction R consists of

the states for which an admissible input exists.

For the purposes of our presentation, we will
use the arguments for robustness of sampled-data
NMPC as given in Findeisen et al. (2003). To do
so, we will assume that:

Assumption 1. A perturbed controlled system

with piece-wise continuous bounded v describing

the input uncertainty

ẋ = f(x, u + v) (5)

has a continuous solution for any x(0) ∈ R, any

piece-wise continuous input u and v.

Assumption 2. The value function V (x) is contin-

uous

Assumption 3. There exists a strictly increasing

function αv with αv(0) = 0 such that for all

x1, x2 ∈ R: V (x1) − V (x2) ≤ αv(||x1 − x2||)

We now define a level set Ωc of V in R where
c > 0 and Ωc = {x ∈ R|V (x) ≤ c}. Then we
assume that

Assumption 4. For all compact sets S ⊂ R there

is at least one level set Ωc such that S ⊂ Ωc.

The level sets help to define a weaker notion
of stability than asymptotic stability as usually
guaranteed by NMPC. Here, we desire a bounded
stability; that the norm of the state after some
time becomes small. The results are based on



the observation that small uncertainties in control
lead to a small difference between the predicted
and real states.

The above assumptions are standard as defined
in Findeisen et al. (2003). Based on them, the
following fact is needed:

Fact 1. For any c > α > 0 with Ωc ⊂ R,
T > δ > 0 the lower bound Vmin(c, α, δ) on
the value function exists and is non-trivial for all
x0 ∈ Ωc/Ωα

0 < Vmin(c, α, δ) =

min
x0∈Ωc/Ωα

∫ δ

o

F (x(τ, x0), u
∗(τ, x0)dτ < ∞ (6)

3. MULTIRATE OPTIMAL CONTROL

To solve the control problem, a future control
trajectory needs to be calculated at each sampling
time and its first part is applied to the process.
The usual assumption regarding this trajectory is
that the control actions can be parametrised as
piece-wise constant. Hence, the original dynamic
problem can be regarded as a problem of static op-
timisation (nonlinear programming – NLP) with
control action values.

The complexity of the optimisation depends on
the prediction horizon – final time T and on the
number of degrees of freedom (piece-wise constant
control moves). In order for the predictive control
to take the nonlinear nature of the process fully
into account, a sufficiently long prediction horizon
must be chosen, enclosing the transients of the
operating point change. Feasibility and quality of
control can be improved by increasing the predic-
tion horizon length T . This leads however, for the
classical case, to a large number of optimised con-
trol variables and a tedious optimisation problem
to be solved in one step.

As it has been proposed in Halldorsson (2002),
it is possible to optimise with control steps of
exponentially increasing time intervals Ts, 2Ts,
4Ts, . . . , T/2. The main advantages of the method
are:

• As only the first element of the optimal
solution will be applied to the process, it is
obvious that the latter part od the trajectory
needs not the be very precise.

• Due to possible uncertainties and distur-
bances, accuracy of state and control pre-
dictions decreases with increasing prediction
horizon.

• The requirement of approximate steady-state
at the end of the horizon dictates the last
part of the optimal trajectory approaching

zero for a sufficiently long time – this is
implicitly considered here.

Several other advantages of the method can be
found if the optimal control trajectory is found
in multiple recursive optimisations with a low
number of degrees of freedom. However, for the
purpose of this contribution, the actual implemen-
tation is not important.

The main drawback of the multirate method is
theoretical and follows from the fact that such a
parameterisation cannot in general guarantee fea-
sibility at t > 0 as the optimal control trajectory
at t = 0 cannot be used in the next sampling time.

In order to cope with the multirate approach, we
assume additionally that

Assumption 5. The sampling period Ts of the

multirate NMPC is sufficiently small.

Based on this assumption, it can be concluded
that the optimal control trajectory calculated at
time t is also feasible as an perturbed control
trajectory at t + Ts. Due to the lack of space we
will only sketch the further steps.

It is possible to obtain

||x(tk + Ts) − x̄(tk + Ts)||

≤

∫ tk+Ts

tk

Lfx||x(s) − x̄(s)||ds + LfuvmaxTs

(7)

where Lfu is the Lipschitz constant of f (x, u)
with respect to u, vmax is the upper bound of
v, tk represents start of a k-th sampling interval
and the predicted variables are denoted by bar.
Applying the Gronwall-Bellman inequality and
from properties of the value function yields

||x(tk +Ts)− x̄(tk +Ts)|| ≤
Lfuvmax

Lfx
(eLfxTs − 1)

(8)

αv

(

Lfuvmax

Lfx
(eLfxT/2 − 1)

)

≤ c − c0 (9)

From this on we obtain the following result:

Theorem 2. Given the level sets Ωα ⊂ Ωc0 ⊂
Ωc ⊂ R and assuming that the error resulting

from small time shift Ts satisfies ||u|| ≤ umax and

that

αv

(

Lfuvmax

Lfx
(eLfxT/2 − 1)

)

≤ min {(c − c0), Vmin(c, α/4, Ts), α/2} (10)

Then for any x(0) ∈ Ωc0 the closed-loop trajecto-

ries under the optimal feedback will not leave the

set Ωc and there exists a finite time Tα such that

x(τ) ∈ Ωα ∀τ ≥ Tα.



Considering the assumptions, Assumption 2 is
generally very difficult to guarantee. This con-
cerns NMPC with state constraints in general and
multirate procedure in particular.

The stability result given here is only of qualita-
tive nature as the exact minimum bounds as in
Fact 1 cannot easily be found.

Receding horizon control with arbitrary open-loop
trajectories calculated in each sampling step can
be thought as a generalisation of the multirate
procesure. Clearly, it still remains a theoretical
challenge to solve quantitatively stability of such
scheme.

4. SIMULATION RESULTS

The aim of the simulations is to show some
properties of the multirate scheme.

4.1 Decreasing Sampling Time

In the first part the effect of decreasing sampling
time will be investigated. Consider a nonlinear
system of the form

ẋ1(t) = [0.5 + cos(x2(t))]x1(t)
+[0.5 + sin(x2(t))]u(t),

ẋ2(t) = x1(t),
(11)

with the input signal constraints

−1.0 ≤ u(t) ≤ 1.0 for t ≥ 0, (12)

subject to the initial state x = 0 and the desired
final state xF = [0 π]T . The objective function is
defined as

J(x(t), u(·)) =

∫ t+T

t

||x(τ) − xF ||
2 + ru(τ)2)dτ,

(13)
where the parameters are chosen as r = 2, T =
6. To assure a stable closed-loop behaviour the
terminal equality constraint x(t + T ) = xF will
be applied.

Multirate control was applied with varying num-
ber Nr of optimisation recursions and with the
basic sampling time Ts = 1.5. The case with
Nr = 1 corresponds to a standard NMPC with
m = 4 equidistant sampling intervals of length Ts.
If Nr = 2 then there are first four sampling periods
of length Ts/2 followed by two sampling periods
with Ts. Further recursion double the number of
sampling periods in the first half of partitions from
the previous recursion.

Simulation results are shown in Figure 1. The
figure shows that as the number Nr of subopti-
misation steps is increased the results converge
to an identical behaviour. As a matter of fact,
deviation in the state variables x1(t) and x2(t)
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Fig. 1. Increasing the number of suboptimisation
steps (r = 2)

from the expected results of convergence, say for
Nr = 5, is clearly detectable only for the first two
settings Nr = 1 and Nr = 2. For Nr ≥ 3 deviations
only appear in control u(t), which originate from
the different sampling rates applied. This confirms
the theoretical results that decrease of the sam-
pling time results in small deviations from optimal
control.

4.2 Distillation Column Control

We consider a distillation column with 19 trays
for separation of a binary mixture of methanol
and iso-propanol Hallager et al. (1986). Its de-
tailed model has been described in Fikar et al.
(1998). In principle, every tray is described by
two differential equations for overall molar (wi)
and methanol (xi) molar balances, and by two
algebraic equations for vapour-liquid relationship
(yi, xi) and liquid molar flow (Li).

The model of the column is considered as a
multivariable system with two inputs and two
outputs. The inputs u are the reflux flowrate
and the reboiler duty (assumed proportional to
the bottom vapour flowrate). In order to prevent
weeping and flooding of the column, the reflux is
constrained to be within lower and upper limits

0.186 ≤ R ≤ 0.996. (14)

The molar vapour flowrate V is constrained by
its mass balance equations. Practically, the con-
straints imposed on V are :

R + 0.01 ≤ V ≤ R + 0.06. (15)

The output variables are liquid mole fractions of
methanol in reboiler xB and in condenser xD .

The problem of reaching a new desired steady
state has been formulated as the optimisation
problem of minimising the integral square error
(ISE)



J = min
u

∫ T

0

(xB(t)−xs
B)2+(xD(t)−xs

D)2dt (16)

The desired final steady state was specified for
molar fractions of methanol in distillate and bot-
tom flows as xs

B = 0.04, xs
D = 0.93. Based on

analysis of dynamical properties of the column,
the final time was set to T = 125min and to show
the potentialities of the method, the control was
divided into m = 32 piece-wise constant segments.

Different NMPC strategies were employed. In the
first one, full m = 32 segment control trajec-
tory was calculated, using only the first control
segment for control, as is usually done in MPC.
In the second one, the proposed approach was
implemented with m = 2 optimised piece-wise
constant controls and with nr = 5 recursions –
that is, the optimisation is performed 5 times
with 2 optimised control segments. These values
ensure that the actually used sampling interval is
the same as for the first strategy. The results are
shown in Fig. 2 and only a minor deviation can
be observed. Comparison of the actually attained
cost at T = 125min gives only a very minor
deterioration of 0.01% of the proposed approach
compared to the classical one. Also in this case,
the differences are negligible. However, the com-
parison of the computational time reveals that
the proposed algorithm is almost 10 times faster
(157 s versus 1479 s per one NMPC step). We
can conclude, that the proposed approach reduces
the computational time significantly without any
large compromise in the control quality.

Another quite popular approach to reduce the
computational time is to utilise the argument of
the control horizon Nu, after which the control
variable remains constant. To make a fair com-
parison, Nu = m = 2 was set. Of course, the com-
putational time is smaller for this case, as only one
optimisation with 2 variables is performed (when
compared with 5 optimisations with 2 controls
in multirate case). However, the results indicate,
that this optimisation is more difficult and takes
approximately 104 s per one NMPC step.

The comparison of this strategy with the full
approach is shown in Fig. 3. It can be seen that
the trajectories are no longer very similar and it
comes to deterioration of the control quality. Also
the actually attained cost is about 0.90% higher
than the full approach.

Compared with the proposed approach, both
methods construct similar control trajectories in
the first part (up to 40min) where not much room
for optimisation exists due to the constraints.
However, the unconstrained part of the control
trajectories differs significantly as the Nu ap-
proach realises an asymptotic type of the tran-

sients whereas the proposed method reacts more
actively.

5. CONCLUSIONS

This contribution has dealt with nonlinear model
predictive control where the open-loop control
problem is characterised by an exponentially in-
creasing sampling time instants. This gives cloed-
loop optimal control and state trajectories very
similar to the classical equidistant NMPC, how-
ever with only a fraction computational time.

Special type of control parameterisation causes
theoretical problems of stability guarantee even if
the original NMPC framework is stabilising. We
have proposed here some stability properties of
the method. However, the quantitative result is
nowadays a very chalenging problem and the ques-
tion remains how to guarantee stability without
the usual feasibility assumption.
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F. Allgöwer and A. Zheng, editors. Nonlinear

Model Predictive Control, volume 26 of Progress

in Systems and Control Theory. Birkhäuser,
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