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Abstract: This paper deals with the time-optimal operation and parameter estimation problem
of a general diafiltration process in the presence of fouling. Fouling stands for one of the dominant
problems in the membrane separation processes. The dynamic behavior of the fouled membrane
is described by a general fouling model taken from literature. An Extended Kalman filter is
proposed for the recursive estimation of unknown parameters in the fouling model. A model-
based optimal nonlinear controller, whose control law is obtained explicitly via Pontryagin’s
minimum principle, is coupled with the parameter estimation and subsequently applied in a
simulation case study to show benefits of the proposed approach.
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1. INTRODUCTION

Membrane processes employ perm-selective membranes to
separate solutes in a solution based on differences in molec-
ular size so that the high molecular weight components
are retained on the feed side of the membrane and the low
molecular weight components are able to pass through it.
These processes have found a wide range of application
in the pharmaceutical, food, and biotechnological indus-
tries (Cheryan, 1998).

A diafiltration is a membrane process that uses a solute-
free solvent (diluant) to control the membrane process
via influencing the concentrations of solutes. Several au-
thors (Foley, 1999; Takači et al., 2009) showed that dif-
ferent strategies of diluant addition can result in different
operational savings where time-optimal operation or min-
imal consumption of diluant can be achieved.

Ng et al. (1976); Takači et al. (2009); Paulen et al. (2012)
optimized the final processing time and/or the consump-
tion of the diluant. This includes the optimization of
the switching times between the predefined operational
modes, such as concentration, constant-volume diafiltra-
tion, application of sophisticated numerical and analytical
approaches. Our recent work (Paulen et al., 2015) showed
that the two major optimization problems can be solved
as a single optimization problem formulated in a multi-
objective fashion where a use of Pontryagin’s minimum
principle allows to obtain analytical solutions for many
common process setups.

Fouling behavior is one of main issues in membrane separa-
tion processes. It decreases effective membrane area due to
the blockage of pores and results in a substantial increase
of operational costs. The pioneering work of Hermia (1982)
presented a unified fouling model describing this behavior.
Recently, Charfi et al. (2012) showed that numerical op-
timization techniques can be employed to predict types
of the fouling mechanism using experimental data of the
permeate flow.

In the work of Jelemenský et al. (2015b) the authors
derived a fully analytical procedure for the time-optimal
operation in the presence of the membrane fouling. How-
ever, optimal model-based control of membrane processes
proposed also by Paulen et al. (2015); Jelemenský et al.
(2015a) requires a knowledge of process model and its
parameters where the use of inaccurate values of the
parameters could lead to significantly suboptimal perfor-
mance. Estimation of unknown parameters can be done
using various methods. Common practice is to employ
a least-squares method off-line. More advanced methods
include Kalman filtering or moving horizon estimation
strategies (Alessandri et al., 2005).

In this paper we study the combined time-optimal opera-
tion of a batch diafiltration process and the estimation of
fouling parameters using Extended Kalman Filter (EKF).
The proposed scheme is attractive as it applies inherently
robust nonlinear optimal feedback control with on-line
estimation of process parameters. We will show that the
estimation of the fouling behavior results in optimal con-
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Fig. 1. Schematic representation of a generalized diafiltra-
tion process.

trol performance even if the fouling parameters are initially
not known.

The paper is organized as follows. Section 2 describes the
process and its model including a model of fouling behav-
ior. Section 3 presents the formulation of the optimization
problem and its analytical solution. An overview of EKF
and its application to the studied problem is described in
Section 4. The proposed approach is applied in a simula-
tion study in Section 5. Section 6 concludes the paper.

2. PROCESS DESCRIPTION AND MODELING

In this paper we study a generalized batch diafiltration
process represented in Fig. 1. We consider that the process
runs under constant pressure and temperature. The diafil-
tration process involves a feed tank, where the solution
that consist of two solutes is introduced, and a membrane.
The feed is brought to the membrane and the stream
rejected by the membrane (retentate) is taken back into
the feed tank. The stream which leaves the system is called
permeate and its flow-rate is defined as q = AJ , where A is
the membrane area and J is the permeate flux subject to
unit membrane area. The permeate flux can be a function
of solutes concentrations and time.

The control of the diafiltration process can be achieved
by adding a solute-free solvent (diluant) into the feed
tank. The control variable α expresses the ratio between
the inflow of diluant and the outflow of the permeate
q. In the industry, there are traditionally used control
modes which differ in the rate of diluant addition. A
mode with α = 0, during which no diluant is added
into the feed tank, is called concentration (C) mode. The
second traditional mode is constant-volume diafiltration
(CVD) where α = 1 and during this mode the inflow of
dilaunt is kept the same as the permeate outflow. Dilution
(D) mode is characterized by α = ∞ where a certain
amount of diluant is added into the feed tank. A typical
industrial control strategy consists of a sequence of the
aforementioned control modes (e.g. C-CVD).

The mass balance for the individual solutes can be written
as (Kovács et al., 2009)

dci
dt

=
ciq

V
(Ri − α), ci(0) = ci,0, i = 1, 2, (1)

where V stands for the volume of the feed at time t
and subscript i denotes the macro-solute and micro-solute,

respectively. Ri is the so-called rejection coefficient. The
rejection coefficient is a dimensionless number between 0
and 1 that measures the ability of the membrane to reject
a particular solute.

The total mass balance can be written as
dV

dt
= u− q = (α− 1)AJ, V (0) = V0, (2)

with V0 being the initial volume of the processed solution.

Moreover, the rejection coefficient Ri can be a constant
or a function of both concentrations. In the remainder of
the paper we will consider that the rejection coefficients
are constant (R1 = 1 and R2 = 0). This means that the
membrane is perfectly impermeable for the macro-solute
and that the micro-solute can freely pass through the
membrane pores. Since the rejection for the macro-solute is
equal to one, the total mass in the system will not change
and stays constant (c1(t)V (t) = c1,0V0). This allows us
to eliminate the differential equation for the volume (2).
Then, the equivalent model has the following form

dc1
dt

=
c21AJ

c1,0V0
(1 − α), c1(0) = c1,0, (3)

dc2
dt

= −c1c2AJ

c1,0V0
α, c2(0) = c2,0. (4)

2.1 Membrane Fouling

The membrane fouling depends on several properties such
as feed concentration and viscosity, membrane material,
temperature, and pressure. Fouling causes the decrease
of the effective membrane area due to the deposit of the
solutes in/on the membrane. A unified model of the fouling
behavior was derived by Hermia (1982) in terms of the
total permeate flux and time and reads as

d2t

dV 2
p

= K

(

dt

dVp

)n

, (5)

where Vp represents the permeate volume, t is time,
and K is the fouling rate constant. The parameter n
determines the type of the fouling mechanism where four
classical fouling models can be recognized: cake (n = 0),
intermediate (n = 1), standard (internal) (n = 3/2), and
complete (n = 2) fouling model.

Equation (5) can be rewritten as as (Bolton et al., 2006;
Vela et al., 2008)

dJ

dt
= −KA2−nJ3−n. (6)

and it can be solved for a particular choice of n to yield

n = 0 :
1

J2
=

1

J2
0

+Kgt, (7a)

n = 1 :
1

J
=

1

J0
+Kit, (7b)

n =
3

2
:

1√
J

=
1√
J0

+Kst, (7c)

n = 2 : ln J = ln J0 −Kct, (7d)

where J0 is the initial flux and Kg,Ki,Ks,Kc are respec-
tive fouling constants for the different values of n.

Fig. 2 shows a graphical representation of these fouling
mechanisms. The distinguishing feature of the models
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Fig. 2. Graphical representation of the four classical foul-
ing models developed by Hermia (1982).

is present by the way the molecules deposit in/on the
membrane. The complete pore blocking model considers
that all solutes brought to the surface of the membrane
will block all membrane pores. The intermediate fouling
model assumes that not all solutes block the membrane
surface and that the solutes can deposit on each other. The
internal blocking model considers fouling in the membrane
pores. The cake filtration model assumes that the solutes
brought to the membrane will deposit on each other and
form a filtration cake on the surface of the membrane.

Although the Hermia’s model was derived for dead-end
systems, we will apply it to cross-flow systems. Then,
J0(c1, c2) will represent flux through the unfouled mem-
brane and J(t, c1, c2) the flux subject to fouling.

3. PROCESS OPTIMIZATION

The objective of the process optimization is to drive the
process from the initial state defined by initial concentra-
tions c1,0 and c2,0 to the desired final state [c1(tf), c2(tf)]
in a minimum time. The manipulated variable is α(t). The
mathematical representation of the optimization problem
is of the form

J ∗ = min
α(t)

∫ tf

0

1 dt, (8a)

s.t.

ċ1 =
c21AJ

c1,0V0
(1− α), c1(0) = c1,0, (8b)

ċ2 = −c1c2AJ

c1,0V0
α, c2(0) = c2,0, (8c)

c1(tf) = c1,f, (8d)

c2(tf) = c2,f, (8e)

J = J(t, J0(c1, c2),K, n), (8f)

α ∈ [0,∞). (8g)

The optimization problem can be solved using various
numerical or analytical methods of dynamic optimization.

In our recent paper (Jelemenský et al., 2015a) we derived
the optimal operation of a diafiltration process subject to
membrane fouling. Analytical approach based on Pontrya-
gin’s minimum principle (Pontryagin et al., 1962; Bryson,
Jr. and Ho, 1975) was used. The optimal control is an
explicit nonlinear control strategy defined on several con-
centration regions and over three consecutive time steps.
The three steps are as follows.

(1) In the first step a maximum or minimum control
action is applied until the singular curve is reached

S(t, c1, c2) = J + c1
∂J

∂c1
+ c2

∂J

∂c2
= 0. (9)

If the initial state of the process lies to the left of
the singular curve in the state diagram, the process
is operated in concentration mode (α = 0). In the
opposite case, the process is operated in dilution
mode (α = ∞). Thus, the singular curve forms a
border between different state regions.

(2) The singular control is applied once the process state
resides on the singular curve which forces the states
to move along at the singular curve.

α(t) =

∂S

∂c1
c1

∂S

∂c1
c1 +

∂S

∂c2
c2

+

∂S

∂t
c1AJ

c10V0

(

∂S

∂c1
c1 +

∂S

∂c2
c2

) .

(10)

This step is terminated once the ratio of the concen-
trations is equal to the ratio of their final concen-
trations or when the desired concentration of micro-
solute is reached.

(3) The last step is similar to the first step. The position
of the final state point decides whether we apply the
concentration mode with α = 0 (this is done when the
final point lies to the right of the singular curve) or
the pure dilution mode with α = ∞ (this is the case
when the final point lies to the left of the singular
curve) until the final concentrations are reached.

Note that the optimal control does not depend on the
fouling model and the fouling constant in the first and
the last step. This property is used in the proposed
methodology as it helps to retain optimality even if the
process model is initially not known perfectly.

The optimal sequence of operations depends on the initial
and final states. Therefore, any of the steps can be missing
from the optimal control structure. For example, the
singular step can be skipped and the optimal control will
be saturated on constraints for a particular set of initial
and final conditions.

4. PARAMETER ESTIMATION

As presented above the membrane fouling belongs to one
of main obstacles in membrane separation since it causes
the membrane flux to decline. Another issue is that the
fouling behavior can change with time. Several fouling
mechanisms can occur in parallel or in series during the run
of process. For example Abbasi et al. (2012) have observed
experimentally different fouling phenomena during one
batch. Salahi et al. (2010) have described experiments
where the initial flux decline was attributed to standard
pore blocking mechanism and changed to cake formation
in the final phase.

Therefore, to achieve better performance of the membrane
separation it is necessary to estimate not only the values
of the individual fouling constants but also the fouling
model itself. This can be achieved by employing an Ex-
tended Kalman Filter (Kalman, 1960; Bavdekar et al.,
2011) (EKF) for the simultaneous estimation of states
and parameters. Main parameters that are necessary to
obtain accurate information about fouling are the fouling
constant K and the parameter n.

The main idea behind the EKF is that the non-linear
system is linearized around the current EKF estimate and



the measurements are taken at discrete time instants in
order to correct the dynamics of the filter.

In the first step it is necessary to augment the vector of
state variables with the estimated parameters θ that rep-
resent new states with no dynamics and unknown initial
value. Further, the explicit appearance of time is replaced
by a new state x3, yielding new process description with
5 states

ċ1 =
c21AJ

c1,0V0
(1− α), c1(0) = c1,0, (11a)

ċ2 = −c1c2AJ

c1,0V0
α, c2(0) = c2,0, (11b)

ẋ3 = 1, x3(0) = 0, (11c)

K̇ = 0, K0(0) = K0, (11d)

ṅ = 0, n(0) = n0, (11e)

J = J(x3, J0(c1, c2),K, n) (11f)

or
˙̃x = f̃(x̃,u). (12)

Possible candidates for the process outputs are the con-
centrations c1, c2, and the permeate flux J . Observability
matrix for such process description has rank equal to 4.
This shows that parameters K and n are not simultane-
ously observable as they enter the process equations via J
only and there are infinitely many combinations of them
that can lead to the actual value of J .

A possible remedy is to add some new measured variable
that is a different function of unknown parameters. One
candidate is derivative J̇ of the flux with respect to time.
Process observability is then of full rank. It is, however, not
possible to measure J̇ exactly and we use an approximation
of the third order to obtain its value.

It has to be noted that the structural identifiability of
the parameters K and n was also confirmed by the
Taylor series method (Pohjanpalo, 1978). However, this
approach assumes idealized conditions (e.g., continuous
measurements and the availability of the output signal and
all its derivatives).

Process outputs measured in discrete-time samples are
then given as

yk = h(xk) = (c1, c2, x3, J, J̇)
T . (13)

The observer dynamics is given by
˙̂x = f̃ (x̂,u), (14)

Ṗ
−

= FP− + P−F T +Q, (15)

for t ∈ (tk−1, tk] with P−(tk−1) = P+
k−1 and with the

update of the observer defined as follows

Lk = P−

k C
T
k (CkP

−

k C
T
k +Rk)

−1, (16a)

x̂k = x̂k−1 +Lk(yk − h(x̂k−1)), (16b)

P+
k = (I −LkCk)P

−

k , (16c)

where the state transition and observation matrices are
defined by following Jacobians

F =
∂f̃

∂x

∣

∣

∣

∣

x̂(t),u(t)

, Ck =
∂h

∂x

∣

∣

∣

∣

x̂k

. (17)

Matrices R and Q denote, respectively, the covariance
matrix of the noise affecting the measurements and the

covariance matrix of the noise affecting the state dynamics.
The matrix P represents the covariance of the estimation
error of states and parameters. The matrices R, Q and
P+

0 can also be thought of as tuning knobs of the estima-
tion algorithm affecting its estimation performance and
convergence.

Based on the measured outputs the Kalman filter provides
on-line estimates of parameters K and n. This knowledge
is then used to update regions and parameters of the time-
optimal controller.

5. CASE STUDY

We consider the batch membrane process which operates
under limiting flux conditions. The permeate flux of the
unfouled membrane is then as follows

J0(c1) = k ln

(

clim
c1

)

, (18)

where k is the mass transfer coefficient and clim is the
limiting concentration of the macro-solute. We can observe
that the permeate flux depends solely on the macro-solute
concentration. The goal is to drive the system from initial
concentrations [c1,0, c2,0] = [10mol/m3, 100mol/m3] to
final concentrations [c1,f, c2,f] = [100mol/m3, 1mol/m3] in
minimum time. The initial volume of the filtered solution
is V0 = 100L. We consider the limiting flux model with
parameters k = 4.79m/s, clim = 319mol/m3 and the
membrane area 1m2.

Three simulation experiments were performed with one
constant value of the fouling rate K = 2 and different
values of n, hence with different fouling models.

A crucial point in the design of an EKF is the choice of
the covariance matrices that affect the performance and
the convergence of EKF. In this preliminary study we did
not consider any measurement noise therefore we chose
the matrix R = 0.001I5. The initial estimation error for
the states and the estimated parameters represented by
matrix P 0 is of the following form

P 0 = diag(0.001, 0.001, 0.001, 0.1, 0.1), (19)

where we assume that the initial measurement error for
the first three states is small since the concentrations are
known. Similarly, the covariance matrix which affects the
state dynamics Q is chosen as follows

Q = diag(0.001, 0.001, 0.001, 100, 20). (20)

Time evolutions of the parameter estimates for the in-
dividual fouling models are shown in Fig. 3. Although
the estimated values of the parameters do not converge
exactly to the true values, they are, in all cases, reasonably
close to them. This is mainly caused by the approximation
of the derivative of the flux and by nonlinearity of the
process model. The convergence is always achieved within
the first control arc (concentration mode) of the opera-
tion where the control is constant and does not depend
on estimated parameters or the states variables. Fouling
parameter estimates are needed to accurately estimate the
time of switching to the second control arc and to calculate
the singular control. Therefore, as the Kalman filter can
converge to the neighborhood of true parameters within
the first mode, the proposed procedure yields all con-
sidered simulation scenarios having practically the same
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Fig. 3. Estimation of the fouling parameter n for the three
chosen cases.

performance as the optimal control with perfect knowledge
of the fouling model and its parameters.

We can observe oscillations of parameter values around the
first and the second switching times. In the intermediate
fouling model, n actually diverged near the second switch.
This is caused by the approximation of J̇ as it does not
occur when the true value of J̇ was used as the measured
value.

Parameter estimation can be terminated after the second
switch. Control in the third arc is given by α = ∞ and
this control mode is performed after the separation – we
only add water to reach the desired final concentrations.

Fig. 4 shows the ideal optimal concentration state diagram
and corresponding optimal control profile (blue line) for
the case with perfect knowledge of fouling parameters
(K = 2 and n = 1). The dashed red line represents the the
behavior of the concentrations and the control profile with
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Fig. 4. Concentration state diagram and optimal control
profile for ideal and estimated fouling parameters
(K = 2 and n = 1.5).

estimated fouling parameters. We note that this was the
worst case of the three with parameter convergence issues.

As explained in the theoretical part, the optimal operation
is a three step strategy α = (0, α2(t),∞) where the second
step is the singular control close to one (for this membrane
and the fouling model). Difference in optimal switching
times and switching concentrations stay below 1%. The
largest difference in the control profile is 4% before the
second switch. However, as it occurs only during the last
few minutes of the separation it has only a minor impact
on the state/control profiles and on the operating time.

6. CONCLUSIONS

In this paper we studied the time-optimal operation of a
general batch diafiltration process in the presence of mem-
brane fouling. The time-optimal operation and control can
be described as an explicit nonlinear optimal control law
defined over state regions. The structure of the optimal



operation consists generally of three steps with a singular
control in the middle step.

The Extended Kalman Filter was proposed to estimate the
main parameters that describe the fouling behavior. The
main motivation was to estimate the fouling parameters
directly during the separation process. Online estimation
can be crucial as the fouling can change during the run.
The results indicate that the EKF is able to converge to
the neighborhood of true values of the fouling parameters.
The convergence is satisfactory even if the control variable
is constant during the first time interval and does not
guarantee persistent excitation conditions. Therefore, it is
possible to predict the fouling mechanism during the run
of the process.

Further research directions will be focused on experimen-
tal verification of the proposed procedure in laboratory
conditions.
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ermak, P. (2012). Optimal feeding strategy of diafil-
tration buffer in batch membrane processes. Jour-
nal of Membrane Science, 411-412, 160–172. doi:
10.1016/j.memsci.2012.04.028.
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