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UPS & loads constraints

minimal uptime

UPS discharge model
current UPS capacities
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UPS Optimization Example
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UPS Optimization Example

UPS 1 UPS 2 UPS 3

Load 1 Load 2 Load 3

    Maximize
Considering

UPS & loads constraints

minimal uptime

UPS discharge model
current UPS capacities

only 1 switch at a time

If-then rules based 
on switches 
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Hybrid
systems

Control theory Computer science

Real-valued signals
Differential equations

Binary signals
If-then-else rules
Finite-state machines
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Hybrid Systems in Practice

• Plants with binary controls (e.g. turbine on/off)
• Logic constraints (e.g. when unit 1 is on, unit 2 must be off)
• Multi-stage control (e.g. startup, normal operation, shutdown)
• Systems with nonlinearities (e.g. hysteresis or dead zone)
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DC-DC Converter

• Continuous states, discrete inputs
• Linear dynamics changes depending on the value of input

Hybrid Systems: Examples (II)

DC2DC Converter
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Mechanical System with Backlash

• Continuous states
• Linear dynamics switches between two modes:

- contact mode
- backlash mode otherwise

Hybrid Systems: Examples (I)

Mechanical system with backlash
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• Continuous dynamics: states x1, x2, ẋ1, ẋ2.

• Two “discrete events”:

a) ”contact mode” ⇒ mechanical parts are

in contact and the force is transmitted.

Condition:

[(∆x = δ) ∧ (ẋ1 > ẋ2)]
∨

[(∆x = ε) ∧ (ẋ2 > ẋ1)]

b) ”backlash mode” ⇒ mechanical parts are

not in contact

[(�x = �) ^ (ẋ1 > ẋ2)] _ [(�x = ✏) ^ (ẋ2 > ẋ1)]
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Chemical Reactor

! !

!"#$%!&'()&*

!+,**-'.-/0

! 1&'/(),2'(/

! '&'*2'-,)%3-+,42&)

! &5(26,*%&5-),(2&'

! 1+-,5%265*-6-'(,(2&'%

2'%)-,*%(26-

• Continuous states and inputs
• Nonlinear dynamics approximated by multiple linearizations
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Modeling of Hybrid Systems

• Suitable mathematical abstraction needed
• For simulations:

- detailed process description
- individual modes usually involve nonlinear dynamics
- can be modeled e.g. using Stateflow / Simulink

• For control:
- descriptive enough to capture behavior of the plant
- simple enough to allow controller synthesis
- dynamics in each mode approximated by an affine expression
- due to presence of switches the overall dynamics is still nonlinear
- mathematical representation of the whole system is needed
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1. Discrete Hybrid Automata

2. HYSDEL

3. Piecewise Affine Models

4. MPC for Hybrid Systems

5. Closing Remarks
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Discrete Hybrid Automata
Discrete Hybrid Automata (DHA)
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• switched affine system (SAS) ⇒ continuous

dynamics

• finite state machine (FSM) ⇒ discrete

events

Interconnection based on:
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continuous states and time

– triggers mode switching of the FSM

• Mode Selector (MS) ⇒ selection of an affine
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Mathematical Modeling of DHAs

• Two key issues:
- how to describe logic components (FSM, event generator, mode selector)
- how to capture the interaction between binary logic and continuous 

dynamics?
• Key idea: 

- convert logic expressions into algebraic expressions
• Examples:

�i 1� �i

�i _ �j �i + �j � 1
�i ^ �j �i + �j � 2

�i ) �j �i � �j � 0
�i , �j �i � �j = 0
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Mathematical Modeling of DHAs

• More complex example:

(�1 ^ �2)| {z } ) (�3 _ �4)| {z }
�a �b

�b = (�3 _ �4) ,

8
><

>:

�b � �1

�b � �2

�1 + �2 � �b

�a = (�1 ^ �2) ,

8
><

>:

�a  �1

�a  �2

�1 + �2  1 + �a

(�a ) �b), (�a � �b)
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Geometric Approach

• Consider any logic expression, e.g. 
• Create the truth table

• Calculate the convex hull

Translation of Logic Rules into

Linear Integer Inequalitites

II) Geometric approach

Key idea:

The polytope P = {δ ∈ {0,1}n | Aδ ≤ B} is

the convex hull of the rows of the truth table

defining a logic proposition Ω(pi).

Example Given: Ω(p1, p2) ! [p1 ⇒ p2]

The truth table:

δ1 δ2 δ3
0 0 1
0 1 1
1 0 0
1 1 1
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Mathematical Modeling of DHAs

• Relations between logic and continuous variables modeled in a 
similar fashion

• Assume a bounded function
• Mathematical representation of the event generator:

m  f(x) M

([f(x)  0], [� = 1]) ,
(

f(x) M(1� �)
f(x) � ✏ + (m� ✏)�
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Mathematical Modeling of DHAs

• Mode selector and switched affine system:

• Rewrite as                                          with

x(t + 1) =

8
>><

>>:

f1(x) if (�1 = 1)
...
fn(x) if (�n = 1)

x(t + 1) = z1 + · · · + zn zi = fi(x)�i
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• Mode selector and switched affine system:

• Rewrite as                                          with
• Corresponding mathematical representation:

x(t + 1) =

8
>><

>>:

f1(x) if (�1 = 1)
...
fn(x) if (�n = 1)

x(t + 1) = z1 + · · · + zn zi = fi(x)�i

zi M�i

zi � m�i

zi  fi(x)�m(1� �i)
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Mixed Logical Dynamical (MLD) Systems

• Compact mathematical representation of hybrid systems

x(t + 1) = Ax(t) + B

u

u(t) + B

�

�(t) + B

z

z(t)
y(t) = Cx(t) + D

u

u(t) + D

�

�(t) + D

z

z(t)
E

x

x(t) + E

u

u(t) + E

�

�(t) + E

z

z(t)  E0

• Involves continuous and binary states, inputs, outputs
• Auxiliary variables:

• binary selectors
• continuous variables

• Mixed-integer linear constraints:
• include physical constraints on state, inputs, outputs
• capture events, FSM, mode selection

�(t)

z(t)
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Automatic Generation of MLD Descriptions?

• Example:

• Associate
• Rewrite state-update equation
• Introduce auxiliary variable 

• Formulate constraints:

x(t + 1) = 1.6�(t)x(t)� 0.8x(t) + u(t)

z(t) = �(t)x(t)

x(t + 1) = 1.6z(t)� 0.8x(t) + u(t)

x(t + 1) =

(
0.8x(t) + u(t) if x(t)  0
�0.8x(t) + u(t) if x(t) > 0

(�(t) = 1), (x(t)  0)

z(t) M(1� �(t))
z(t) � ✏ + (m� ✏)�(t)
z(t) M�(t)
z(t) � m�(t)
z(t)  x(t)�m(1� �(t))
z(t)  x(t)�M(1� �(t))
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HYbrid Systems DEscription Language
(HYSDEL)

SYSTEM switched_system {
INTERFACE {
STATE { REAL x [-10, 10]; }
INPUT { REAL u [-1, 1]; }

}
IMPLEMENTATION {
AUX { BOOL delta; REAL z; }
AD  { delta = (x <= 0); }
DA  { z = {IF delta THEN  0.8*x ELSE -0.8*x}; }
CONTINUOUS { x = z + u; }

}
}

HYSDEL 
compiler

source 
code

MLD 
model
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Event Generator = AD Section

SYSTEM tank {
   INTERFACE {
      STATE {
         REAL h; }
      INPUT {
         REAL Q; }  
      OUTPUT {
         BOOL overflow; }  
      PARAMETER {
 REAL k    = 1; }        
   } /* end interface */
   IMPLEMENTATION {
      AUX {
         BOOL s; }
      AD {
         s = (h >= hmax); }
      CONTINUOUS {
         h = h + k * Q; }  
      OUTPUT {
         overflow = s; }  
   } /* end implementation */
} /* end system */   
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Mode Selector + Switched System = DA Section

Nonlinear amplification unit

SYSTEM motor { 

   INTERFACE { 

      STATE { 
         REAL ucomp; } 

      INPUT { 

         REAL u [0, umax];}  

      PARAMETER { 

         REAL ut   = 1;   
         REAL umax = 10;}         

   } /* end interface */            

    

IMPLEMENTATION { 

      AUX { 

         REAL unl; 
         BOOL th; } 

      AD { 

         th = (u >= ut); } 

      DA { 

         unl = { IF th THEN 2.3*u - 1.3*ut  
                       ELSE u}; } 

      CONTINUOUS { 

         ucomp = unl; }    

   } /* end implementation */ 

} /* end system */ 
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Logic Expressions

SYSTEM train { 

   INTERFACE { 

      STATE { 
         BOOL brake; } 

      INPUT { 

         BOOL alarm, tunnel, fire; }

   } /* end interface */             

   IMPLEMENTATION { 

      AUX { 

         BOOL decision; }  
      LOGIC { 

         decision =   

            alarm & (~tunnel | fire); } 

      AUTOMATA { 

         brake = decision; } 
      MUST {   

         fire -> alarm; } 

   } /* end implementation */ 

} /* end system */    
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Discrete-Time Dynamics

SYSTEM capacitorD { 

   INTERFACE { 

      STATE { 
         REAL u; } 

      PARAMETER { 

         REAL R = 1e4;  

         REAL C = 1e-4;  

         REAL T = 1e-1; }    
   } /* end interface */             

   IMPLEMENTATION { 

      CONTINUOUS { 
        u = u - T/C/R*i;  } 

   } /* end implementation */ 

} /* end system */    

Forward Euler discretization:
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Finite State Machines

SYSTEM outflow { 

   INTERFACE { 

      STATE { 
         BOOL closing, stop, opening; } 

      INPUT { 

         BOOL uclose, uopen, ustop; } 

   } /* end of interface */ 

   IMPLEMENTATION { 

      AUTOMATA { 

         closing = (uclose & closing) | (uclose & stop); 

         stop    = ustop | (uopen & closing) | (uclose & opening); 

         opening = (uopen & stop) | (uopen & opening);  } 
      MUST { 

         ~(uclose & uopen); 

         ~(uclose & ustop); 

         ~(uopen  & ustop); }    

   } /* end implementation */ 
} /* end system */    
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Constraints

SYSTEM watertank { 

   INTERFACE { 

      STATE { 
         REAL h; } 

      INPUT { 

         REAL Q; }    

      PARAMETER { 

         REAL hmax = 0.3;  
         REAL k    = 1; }         

   } /* end interface */            

    

   IMPLEMENTATION { 
      CONTINUOUS { 

         h = h + k*Q; } 

      MUST { 

          h - hmax <= 0; 

         -h        <= 0; } 
   } /* end implementation */ 

} /* end system */    
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HYSDEL

• Generates MLD mathematical description out of user-provided 
source file

• Translates arbitrary logic conditions into appropriate mixed-integer 
constraints

• Automatically calculates lower/upper bounds of linear expressions
• Allows to simulate MLD systems in MATLAB & Simulink
• GPL-based tool
• http://control.ee.ethz.ch/~hybrid/hysdel/
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Piecewise Affine Systems

x

f(x)‏
 Another popular 

framework for modeling 
of hybrid systems

 IF-THEN rules translate 
into an mixed-integer 
model

 arbitrary precision can be 
achieved by adding more 
linearizations

IF
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PWA vs MLD Models

• MLD: natural for systems including finite state automata and logic 
expressions

• PWA: ideal for approximating nonlinear functions
• Under mild assumptions one can convert from MLD to PWA 

representation and vice versa
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Case Study: CSTR

• Nasty nonlinear dynamics

• Constraints on states and inputs
• Approximated by a PWA system with 32 local linearizations

ẋ =

2

664

�k1(T )cA � k2(T )c2
A + (cin � cA)u1

k1(T )(cA � cB)� cBu1

h(cA, cB , T ) + (Tc � T )↵ + (Tin � T )u1

(T � Tc)� + �u2

3

775
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Case Study: CSTR
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Obtaining PWA Models

• The process of obtaining a PWA approximation of a nonlinear 
function includes:

- selection of suitable linearization points
- calculation of corresponding local linearization
- determination of regions of validity

• Bottom line: easy to do in 1D, difficult in 2D, impossible in higher 
dimensions

• Question: can the process be automated?

x

f(x)‏
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Automatic Multiple Linearization of 1D Functions

sin(x)

x

7 linearization points, approximation error 8%
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Automatic Multiple Linearization of 1D Functions

sin(x)

x

11 linearization points, approximation error 2%
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Automatic Multiple Linearization of 2D Functions

f(x1, x2) = sin(x1) cos(x2)
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Automatic Multiple Linearization of 2D Functions

PWA approximation using 10 linearizations
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Automatic Multiple Linearization of 2D Functions

Approximation error < 0.1 %
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The Theory Behind
• Consider a product of two variables
• Define two auxiliary variables
• Observe the equivalence: 
• Now we have a difference of two nonlinear 1D functions, hence 

we are back to the 1D scenario

f = x1x2

f =
1
4
(u2

1 � u2
2)

u1 = (x1 + x2), u2 = (x1 � x2)
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AUTOPROX: Automatic PWA Approximation 
Toolbox

• http://www.kirp.chtf.stuba.sk/~sw/
• Inputs:

- symbolic representation of an arbitrary nonlinear function, e.g.

- lower/upper bounds on variables
- number of linearization points

• Outputs:
- individual linearizations
- regions of validity
- direct export to HYSDEL

sin(x

2
1 + exp(1/x2))(x3 � cos(|x4|))
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Simplification of PWA Functions

252 regions 39 regions

x1

x2

x1

x2
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Step 1: Hyperplane Arrangement4.3 Disjoint Optimal Complexity Reduction 63

+ + + −

+ + + +

+ + − −

+ − − −

− − − −
− + + +

− − + +− − − +

+ − − +

+ + − +

1

2
3

4

Figure 4.1: Example with four hyperplanes in R = 2 and the corresponding markings.

The polyhedra corresponding to Mw are white and the polyhedra correspond-

ing to M ′
b are grey shaded, respectively

Algorithm 4.1

function Mm = Merge( Mw, M ′
b, z, z̄ )

m = env(Mw)

Mb = {mb ∈ M ′
b | Pmb

⊆ Pm}

if Mw = ∅ then Mm = ∅

elseif Mb = ∅ then Mm = m

else

I = {i | m(i) = ’∗’}

Mm = ∅

for i ∈ I

if z < z̄ then

Mm1 = Merge ( Mw|m(i)=− , Mb|m(i)=− , z, z̄ )

Mm2 = Merge ( Mw|m(i)=+ , Mb|m(i)=+ , z + #Mm1 , z̄ )

if Mm = ∅ or #Mm1 + #Mm2 < #Mm then

Mm = Mm1 ∪ Mm2

z̄ = min(z̄, z + #Mm)

return Mm

Example 4.1 As an example with four hyperplanes in a two-dimensional space consider

Fig. 4.1. The envelope of the white polyhedra is given by the positive half space of

H4 and the marking m = ∗∗∗+. Thus, only the black polyhedra with markings Mb =

{+−−+, ++−+} are considered, and branching is only performed on the hyperplanes in
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Step 2: Associate Boolean Literals4.3 Disjoint Optimal Complexity Reduction 63
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Figure 4.1: Example with four hyperplanes in R = 2 and the corresponding markings.

The polyhedra corresponding to Mw are white and the polyhedra correspond-

ing to M ′
b are grey shaded, respectively

Algorithm 4.1

function Mm = Merge( Mw, M ′
b, z, z̄ )

m = env(Mw)

Mb = {mb ∈ M ′
b | Pmb

⊆ Pm}

if Mw = ∅ then Mm = ∅

elseif Mb = ∅ then Mm = m

else

I = {i | m(i) = ’∗’}

Mm = ∅

for i ∈ I

if z < z̄ then

Mm1 = Merge ( Mw|m(i)=− , Mb|m(i)=− , z, z̄ )

Mm2 = Merge ( Mw|m(i)=+ , Mb|m(i)=+ , z + #Mm1 , z̄ )

if Mm = ∅ or #Mm1 + #Mm2 < #Mm then

Mm = Mm1 ∪ Mm2

z̄ = min(z̄, z + #Mm)

return Mm

Example 4.1 As an example with four hyperplanes in a two-dimensional space consider

Fig. 4.1. The envelope of the white polyhedra is given by the positive half space of

H4 and the marking m = ∗∗∗+. Thus, only the black polyhedra with markings Mb =

{+−−+, ++−+} are considered, and branching is only performed on the hyperplanes in
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Step 3: Represent Regions to Merge by Logic 
Functions

4.3 Disjoint Optimal Complexity Reduction 63
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Figure 4.1: Example with four hyperplanes in R = 2 and the corresponding markings.

The polyhedra corresponding to Mw are white and the polyhedra correspond-

ing to M ′
b are grey shaded, respectively

Algorithm 4.1

function Mm = Merge( Mw, M ′
b, z, z̄ )

m = env(Mw)

Mb = {mb ∈ M ′
b | Pmb

⊆ Pm}

if Mw = ∅ then Mm = ∅

elseif Mb = ∅ then Mm = m

else

I = {i | m(i) = ’∗’}

Mm = ∅

for i ∈ I

if z < z̄ then

Mm1 = Merge ( Mw|m(i)=− , Mb|m(i)=− , z, z̄ )

Mm2 = Merge ( Mw|m(i)=+ , Mb|m(i)=+ , z + #Mm1 , z̄ )

if Mm = ∅ or #Mm1 + #Mm2 < #Mm then

Mm = Mm1 ∪ Mm2

z̄ = min(z̄, z + #Mm)

return Mm

Example 4.1 As an example with four hyperplanes in a two-dimensional space consider

Fig. 4.1. The envelope of the white polyhedra is given by the positive half space of

H4 and the marking m = ∗∗∗+. Thus, only the black polyhedra with markings Mb =

{+−−+, ++−+} are considered, and branching is only performed on the hyperplanes in

�1�2�3�4

�1�2�3�4

�1�2�3�4

�1�2�3�4

White regions = �1�2�3�4 + �1�2�3�4 + �1�2�3�4 + �1�2�3�4

= �1�2�4(�3 + �3) + �2�3�4(�1 + �1)

= �1�2�4 + �2�3�4
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return Mm
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Step 5: Recover Regions
4.3 Disjoint Optimal Complexity Reduction 63

+ + + −

+ + + +

+ + − −

+ − − −

− − − −
− + + +

− − + +− − − +

+ − − +

+ + − +

1

2
3

4

Figure 4.1: Example with four hyperplanes in R = 2 and the corresponding markings.

The polyhedra corresponding to Mw are white and the polyhedra correspond-

ing to M ′
b are grey shaded, respectively

Algorithm 4.1

function Mm = Merge( Mw, M ′
b, z, z̄ )

m = env(Mw)

Mb = {mb ∈ M ′
b | Pmb

⊆ Pm}

if Mw = ∅ then Mm = ∅

elseif Mb = ∅ then Mm = m

else

I = {i | m(i) = ’∗’}

Mm = ∅

for i ∈ I

if z < z̄ then

Mm1 = Merge ( Mw|m(i)=− , Mb|m(i)=− , z, z̄ )

Mm2 = Merge ( Mw|m(i)=+ , Mb|m(i)=+ , z + #Mm1 , z̄ )

if Mm = ∅ or #Mm1 + #Mm2 < #Mm then

Mm = Mm1 ∪ Mm2

z̄ = min(z̄, z + #Mm)

return Mm

Example 4.1 As an example with four hyperplanes in a two-dimensional space consider

Fig. 4.1. The envelope of the white polyhedra is given by the positive half space of

H4 and the marking m = ∗∗∗+. Thus, only the black polyhedra with markings Mb =

{+−−+, ++−+} are considered, and branching is only performed on the hyperplanes in

�1�2�3�4

�1�2�3�4

�1�2�3�4

�1�2�3�4

White regions = �1�2�3�4 + �1�2�3�4 + �1�2�3�4 + �1�2�3�4

= �1�2�4(�3 + �3) + �2�3�4(�1 + �1)

= �1�2�4 + �2�3�4

Friday, April 19, 13



Step 5: Recover Regions
4.3 Disjoint Optimal Complexity Reduction 63

+ + + −

+ + + +

+ + − −

+ − − −

− − − −
− + + +

− − + +− − − +

+ − − +

+ + − +

1

2
3

4

Figure 4.1: Example with four hyperplanes in R = 2 and the corresponding markings.

The polyhedra corresponding to Mw are white and the polyhedra correspond-

ing to M ′
b are grey shaded, respectively

Algorithm 4.1

function Mm = Merge( Mw, M ′
b, z, z̄ )

m = env(Mw)

Mb = {mb ∈ M ′
b | Pmb

⊆ Pm}

if Mw = ∅ then Mm = ∅

elseif Mb = ∅ then Mm = m

else

I = {i | m(i) = ’∗’}

Mm = ∅

for i ∈ I

if z < z̄ then

Mm1 = Merge ( Mw|m(i)=− , Mb|m(i)=− , z, z̄ )

Mm2 = Merge ( Mw|m(i)=+ , Mb|m(i)=+ , z + #Mm1 , z̄ )

if Mm = ∅ or #Mm1 + #Mm2 < #Mm then

Mm = Mm1 ∪ Mm2

z̄ = min(z̄, z + #Mm)

return Mm

Example 4.1 As an example with four hyperplanes in a two-dimensional space consider

Fig. 4.1. The envelope of the white polyhedra is given by the positive half space of

H4 and the marking m = ∗∗∗+. Thus, only the black polyhedra with markings Mb =

{+−−+, ++−+} are considered, and branching is only performed on the hyperplanes in

�1�2�3�4

�1�2�3�4

�1�2�3�4

�1�2�3�4

White regions = �1�2�3�4 + �1�2�3�4 + �1�2�3�4 + �1�2�3�4

= �1�2�4(�3 + �3) + �2�3�4(�1 + �1)

= �1�2�4 + �2�3�4

Friday, April 19, 13



1. Discrete Hybrid Automata

2. HYSDEL

3. Piecewise Affine Models

4. MPC for Hybrid Systems

5. Closing Remarks

Friday, April 19, 13



Mixed Logical Dynamical (MLD) Models

• Compact mathematical representation of hybrid systems

x(t + 1) = Ax(t) + B

u

u(t) + B

�

�(t) + B

z

z(t)
y(t) = Cx(t) + D

u

u(t) + D

�

�(t) + D

z

z(t)
E

x

x(t) + E

u

u(t) + E

�

�(t) + E

z

z(t)  E0

• Involves continuous and binary states, inputs, outputs
• Auxiliary variables:

• binary selectors
• continuous variables

• Mixed-integer linear constraints:
• include physical constraints on state, inputs, outputs
• capture events, FSM, mode selection

�(t)

z(t)
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MPC Formulation for MLD Models

min
N�1X

k=0

(kQ
x

x

t+k

k
p

+ kQ
u

u

t+k

k
p

)

s.t. x

t+k+1 = Ax

t+k

+ B

u

u

t+k

+ B

�

�

t+k

+ B

z

z

t+k

E

x

x

t+k

+ E

u

u

t+k

+ E

�

�

t+k

+ E

z

z

t+k

 E0

x

t+k

2 X
u

t+k

2 U
x

t

= x(t)
�

t+k

2 {0, 1}n�
, z

t+k

2 Rnz

• The optimization problem is no longer convex!
- mixed-integer QP for
- mixed-integer LP for

• Can still be solved in “reasonable” time (GUROBI, CPLEX)

p = 2
p = {1,1}
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MPC for PWA Models

• Key assumptions:
- each dynamics is valid over a polytopic region
- the regions do not overlap, i.e.

• Associate one binary selector per one region:
• Conversion to mixed-integer inequalities:
• Add an exclusive-or condition: 
• Finally add:

IF

D
i

= {x
k

| D

x

i

x

k

 D

0
i

}

(�i = 1), (xk 2 Di)

X
�i = 1

Di \Dj = ;

D

x

i

x

k

�D

0
i

M(1� �

i

)

xk+1 M(1� �i) + (Aixk + Biuk + fi)
xk+1 � m(1� �i) + (Aixk + Biuk + fi)
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MPC for PWA Models

min
N�1X

k=0

(kQ
x

x

t+k

k
p

+ kQ
u

u

t+k

k
p

)

s.t. x

t+k+1  M(1� �

t+k,i

) + (A
i

x

t+k

+ B

i

u

t+k

+ f

i

)
x

t+k+1 � M(1� �

t+k,i

) + (A
i

x

t+k

+ B

i

u

t+k

+ f

i

)
D

x

i

x

t+k

�D

0
i

 M(1� �

t+k,i

)
X

�

t+k,i

= 1

x

t+k

2 X
u

t+k

2 U
x

t

= x(t)
�

t+k,i

2 {0, 1}

• Also non-convex, leads to MILP or MIQP problems
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Smart Damping Materials

•   Simulations 

•   Control Design using Receding Horizon Optimal Control 

–   Receding Horizon Optimal Control (RHOC) solving MIQP online 

–   Comparison:  

    Heuristic vs. RHOC 

–   Multi-mode 

    broadband damping 

M
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uncontrolled 

RHOC 
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Direct Torque Control

ABB’s DTC 

Our MPC 

Reduction of switching frequency by up to 45 % (on average 25 %) 
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Control of Anesthesia

Physical Setup: 

•  Patient undergoing surgery 

•  Analgesic infusion pump 

Control Objectives: 

•  Minimize stress reaction to 

 surgical stimulation  

 (by controlling mean arterial pressure) 

•  Minimize drug consumption 

Excellent performance of administration scheme, 

mean arterial pressure variations kept within bounds 
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Control of Anesthesia
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Traction Control

Physical Setup: 

•  Improve driver's ability to control vehicle under    adverse external 

conditions (wet or icy roads) 

•  Tire torque is nonlinear function of slip 

•  Uncertainties and constraints 

Control Objectives: 

•  Maximize tire torque by keeping the tire slip  

 close to the desired value 

Experimental results: 2000 Ford Focus on a Polished Ice Surface;

 Receding Horizon controller with 20 ms sampling time 

Tire Slip 

T
ir

e 
T

o
rq

u
e 

Piecewise affine  

approximation 
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Adaptive Cruise Control

Physical Setup: 

Control Objectives: 

•  Track reference speed 

•  Respect traffic rules 

•  Consider all objects on all lanes 

Optimal state-feedback control law successfully implemented and tested on

 a research car Mercedes E430 with 80ms sampling time 

Longitudinal and Lateral  

Control 

Sensors: IRScanner, 

Cameras, Radar 

Test Vehicle 

Traffic Scene 

Virtual Traffic 

Scene 
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T !̇(t) + !(t) = Kvp(t)

Servo Motor Example

voltage
angle

angular velocity
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c
�c

v

vp

vp =

8
><
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Servo Motor Example: Deadzone

Hybrid system!
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Servo Motor Example
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T !̇(t) + !(t) = Kvp(t)
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Explicit MPC with 627 Regions
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Regions
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Optimal Control Law
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Implementation
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Magnetic Manipulator

Time-optimal manipulation by switching force field

Jiřı́ Zemánek1 and Sergej Čelikovský2 and Zdeněk Hurák1

Abstract— The paper describes a simple switching control
scheme for manipulation of an object in a force field. In
this paper, a force field generated by a single source is
considered, which constitutes a basic building block for a planar
manipulation by an array of force field sources. The force field
decays with the distance from the source. An object (particle)
placed freely somewhere in the field feels an attractive force
towards the source. The field can be switched off and on.
Additionally, a weak viscous friction force is exerted on the
object. The task is to switch the field on and off in a way to
bring the object to the origin (where the source of the force
field is located) as fast as possible. Optimal switching strategy
is proposed using simple geometric arguments. The ultimate
motivation for the proposed research comes from the domain
of noncontact planar manipulation with several (micro)particles
by shaping electric or magnetic (or some other) fields.

I. INTRODUCTION

A. Motivation — distributed planar manipulation of an iron
ball through an array of coils

Before defining and solving an abstract control-theoretic
problem, the ultimate engineering motivation is explained.
As an alternative way of high-precision manipulation of
objects in plane, the concept of an actuator array has been
introduced in early 1990s in the work [1] by K. F. Böhringer.
His further elaborations and contributions by his colleagues
and followers in 1990s were surveyed in [2]. Majority of that
work was centered around open-loop control, intentionally
avoiding sensors. Some later papers such as [7] and [8]
suggest that a combination with feedback may be needed
in some situations, in particular when the actuator array is
not dense enough. The authors of this paper provide a bit
more comprehensive survey in a recent paper [5]. Unlike
most of the above referenced papers, the setting here is that
although the set of actuators is discrete (forming a regular
array), the resulting force field is (spatially) continuous.
Availability of position measurements is assumed, which
leads to consideration of feedback control schemes. The
research documented in the present paper has been triggered
by solving the problem of feedback manipulation by shaping
the magnetic field through an array of coils through which
controlled currents are flowing. The technology might en-
force a restriction that the current can only be switched on

*This work was supported by Grant Agency of the Czech Republic within
the grant P206/12/G014.

1J. Zemánek and Z. Hurák are with Faculty of Electrical
Engineering, Czech Technical University in Prague, 12135 Prague,
Czech Republic jiri.zemanek@fel.cvut.cz and
hurak@fel.cvut.cz

2S. Čelikovský is with Institute of Information Theory and Automation,
Academy of Sciences of the Czech Republic, 18208 Prague, Czech Republic
celikovs@utia.cas.cz

or off. The experimental platform is in Fig. 1. The basic
building block is in Fig. 2.

Fig. 1. The experimental platform consisting of a 4�4 array of coils with
an iron core created by stacking together 2�2-coil basic modules. Custom
based power supply and a plexi-glass covered with a (transparent) resistive
foil for real-time position measurement.

Fig. 2. A screenshot from a video with the basic module containing 2�2-
coil module and an iron ball rolling on top of it. No position measurement,
no feedback control, just switching the field on and off. The video is at
http://youtu.be/5fpp5iCPzd8.

B. One-dimensional nonlinear model
Although an engineering inspiration was given in the

previous paragraphs, in this paper we formulate and solve an
abstract problem. Full application needs to take into consider-
ation a number of unrelated issues (modeling, identification,
instrumentation) and will be offered in another paper. A one-
dimensional abstract scenario for the problem studied in this
paper is in Fig.3.

The (vector) force field is derived from the (scalar) poten-
tial and it is assumed the potential has an inverse bell shape.
One candidate for such potential is the Gaussian function

�(x) = �ae�
x

2

b , a, b > 0. (1)

Photo & data courtesy of Z. Hurák, CVUT Prague
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Magnetic Manipulator

PWA model

MPC

5 binaries for
2 binaries for
Discretization at 0.1 seconds

F = ↵�/(�2+�)3

iF

Min/max constraints on position, speed, current
PWL cost function
Prediction horizon 5
Solved as a parametric MILP with 3 parameters

PN�1
k=0 |pk+1 � r| + |vk+1| + |ik|

Friday, April 19, 13



Explicit MPC with 917 Regions
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Simulation Scenario

Time-optimal manipulation by switching force field

Jiřı́ Zemánek1 and Sergej Čelikovský2 and Zdeněk Hurák1

Abstract— The paper describes a simple switching control
scheme for manipulation of an object in a force field. In
this paper, a force field generated by a single source is
considered, which constitutes a basic building block for a planar
manipulation by an array of force field sources. The force field
decays with the distance from the source. An object (particle)
placed freely somewhere in the field feels an attractive force
towards the source. The field can be switched off and on.
Additionally, a weak viscous friction force is exerted on the
object. The task is to switch the field on and off in a way to
bring the object to the origin (where the source of the force
field is located) as fast as possible. Optimal switching strategy
is proposed using simple geometric arguments. The ultimate
motivation for the proposed research comes from the domain
of noncontact planar manipulation with several (micro)particles
by shaping electric or magnetic (or some other) fields.

I. INTRODUCTION

A. Motivation — distributed planar manipulation of an iron
ball through an array of coils

Before defining and solving an abstract control-theoretic
problem, the ultimate engineering motivation is explained.
As an alternative way of high-precision manipulation of
objects in plane, the concept of an actuator array has been
introduced in early 1990s in the work [1] by K. F. Böhringer.
His further elaborations and contributions by his colleagues
and followers in 1990s were surveyed in [2]. Majority of that
work was centered around open-loop control, intentionally
avoiding sensors. Some later papers such as [7] and [8]
suggest that a combination with feedback may be needed
in some situations, in particular when the actuator array is
not dense enough. The authors of this paper provide a bit
more comprehensive survey in a recent paper [5]. Unlike
most of the above referenced papers, the setting here is that
although the set of actuators is discrete (forming a regular
array), the resulting force field is (spatially) continuous.
Availability of position measurements is assumed, which
leads to consideration of feedback control schemes. The
research documented in the present paper has been triggered
by solving the problem of feedback manipulation by shaping
the magnetic field through an array of coils through which
controlled currents are flowing. The technology might en-
force a restriction that the current can only be switched on

*This work was supported by Grant Agency of the Czech Republic within
the grant P206/12/G014.

1J. Zemánek and Z. Hurák are with Faculty of Electrical
Engineering, Czech Technical University in Prague, 12135 Prague,
Czech Republic jiri.zemanek@fel.cvut.cz and
hurak@fel.cvut.cz

2S. Čelikovský is with Institute of Information Theory and Automation,
Academy of Sciences of the Czech Republic, 18208 Prague, Czech Republic
celikovs@utia.cas.cz

or off. The experimental platform is in Fig. 1. The basic
building block is in Fig. 2.

Fig. 1. The experimental platform consisting of a 4�4 array of coils with
an iron core created by stacking together 2�2-coil basic modules. Custom
based power supply and a plexi-glass covered with a (transparent) resistive
foil for real-time position measurement.

Fig. 2. A screenshot from a video with the basic module containing 2�2-
coil module and an iron ball rolling on top of it. No position measurement,
no feedback control, just switching the field on and off. The video is at
http://youtu.be/5fpp5iCPzd8.

B. One-dimensional nonlinear model
Although an engineering inspiration was given in the

previous paragraphs, in this paper we formulate and solve an
abstract problem. Full application needs to take into consider-
ation a number of unrelated issues (modeling, identification,
instrumentation) and will be offered in another paper. A one-
dimensional abstract scenario for the problem studied in this
paper is in Fig.3.

The (vector) force field is derived from the (scalar) poten-
tial and it is assumed the potential has an inverse bell shape.
One candidate for such potential is the Gaussian function

�(x) = �ae�
x

2

b , a, b > 0. (1)
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1. Discrete Hybrid Automata

2. HYSDEL

3. Piecewise Affine Models

4. MPC for Hybrid Systems

5. Closing Remarks
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Hybrid Systems

• Successful in practice (cf. the ABB story)
• Main claimed benefits:

- systematic approach to modeling, simulation and control
- good compromise between quality and complexity of the models when 

hybrid model is used as an approximator of a nonlinear system
- many systems are naturally hybrid (e.g. electrical devices)

• Main criticism:
- creating a good hybrid model requires lots of expertise
- not 100% clear how to optimize model quality
- mixed-integer MPC problems are difficult to solve (but still easier 

compared to full nonlinear optimization)
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Open Challenges

• Modeling
- Can a fully automated PWA-based modeling tool be achieved?
- Investigate behavior of mixed-integer solvers, figure out how to tune the 

model such that optimization runs significantly faster

• Control:
- All mixed-integer solvers are exponential in the worst case. Can we get a 

better bound on the runtime?
- Conditioning, ordering of constraints influences the runtime by 10x. Can 

we figure out what the optimal pre-processing should be?
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Our Vision of Automated Hybrid Modeling

Textual Description 

HYSDEL 

MLD, PWA 

Approximation 

Nonlinear

 Plants 
Logic 

Simulink/StateFlow 

Continuous

 Time 

Friday, April 19, 13



Software for Hybrid Systems

• Multi-Parametric Toolbox (includes HYSDEL2, YALMIP, HIT)
- http://control.ee.ethz.ch/~mpt/

• HYSDEL
- http://control.ee.ethz.ch/~hybrid/hysdel/

• YALMIP
- http://users.isy.liu.se/johanl/yalmip/

• Hybrid Identification Toolbox (HIT)
- http://www-rocq.inria.fr/who/Giancarlo.Ferrari-
Trecate/HIT_toolbox.html
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Interesting References

• Main paper on MLD systems & MPC
- Bemporad & Morari: Control of Integrating Logic, Dynamics, and 

Constraints, Automatica 1999

• Book on hybrid systems
- Lunze: Handbook of Hybrid Systems Control, Cambridge Press, 2009

• Book on explicit MPC for hybrid systems
- Borrelli, Bemporad, Morari: Predictive Control for Linear and Hybrid 

Systems 
 http://www.mpc.berkeley.edu/mpc-course-material
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