Hybrid Systems

Michal Kvasnica Slovak University of Technology in Bratislava

Maximizeminimal uptimeConsideringcurrent UPS capacitiesUPS discharge modelUPS & loads constraintsonly 1 switch at a time

Uptime without switching: **43** minutes

Uptime without switching: **43** minutes Maximal theoretical uptime: **72** minutes

Uptime without switching: **43** minutes Maximal theoretical uptime: **72** minutes Uptime with switching: **72** minutes

Hybrid Systems in Practice

- Plants with binary controls (e.g. turbine on/off)
- Logic constraints (e.g. when unit 1 is on, unit 2 must be off)
- Multi-stage control (e.g. startup, normal operation, shutdown)
- Systems with nonlinearities (e.g. hysteresis or dead zone)

DC-DC Converter

Friday, April 19, 13

S = 1 S

 $\mathbf{S} = \mathbf{0}$

Mechanical System with Backlash

- Continuous states
- Linear dynamics switches between two modes:
 - contact mode $[(\Delta x = \delta) \land (\dot{x}_1 > \dot{x}_2)] \lor [(\Delta x = \epsilon) \land (\dot{x}_2 > \dot{x}_1)]$
 - backlash mode otherwise

Chemical Reactor

- Continuous states and inputs
- Nonlinear dynamics approximated by multiple linearizations

$$\dot{x} = \begin{cases} f_{\text{LIN},1} \text{ if } x \in R_1 \\ \\ f_{\text{LIN},2} \text{ if } x \in R_2 \end{cases}$$

Modeling of Hybrid Systems

- Suitable mathematical abstraction needed
- For simulations:
 - detailed process description
 - individual modes usually involve nonlinear dynamics
 - can be modeled e.g. using Stateflow / Simulink
- For control:
 - descriptive enough to capture behavior of the plant
 - simple enough to allow controller synthesis
 - dynamics in each mode approximated by an affine expression
 - due to presence of switches the overall dynamics is still nonlinear
 - mathematical representation of the whole system is needed

- 1. Discrete Hybrid Automata
- 2. HYSDEL
- 3. Piecewise Affine Models
- 4. MPC for Hybrid Systems
- 5. Closing Remarks

Contact mode:

 $[(\Delta x = \delta) \land (\dot{x}_1 > \dot{x}_2)] \lor [(\Delta x = \epsilon) \land (\dot{x}_2 > \dot{x}_1)]$

Backlash mode

Contact mode:

$$[\Delta x = \delta) \land (\dot{x}_1 > \dot{x}_2)] \lor [(\Delta x = \epsilon) \land (\dot{x}_2 > \dot{x}_1)]$$

Backlash mode

Contact mode:

$$[(\Delta x = \delta) \land (\dot{x}_1 > \dot{x}_2)] \lor [(\Delta x = \epsilon) \land (\dot{x}_2 > \dot{x}_1)]$$

Backlash mode

Backlash mode

 x_1

 $\overline{x_2}$

S

- Two key issues:
 - how to describe logic components (FSM, event generator, mode selector)
 - how to capture the interaction between binary logic and continuous dynamics?
- Key idea:
 - convert logic expressions into algebraic expressions
- Examples:

$$\overline{\delta_i} \qquad 1 - \delta_i \\
\delta_i \lor \delta_j \qquad \delta_i + \delta_j \ge 1 \\
\delta_i \land \delta_j \qquad \delta_i + \delta_j \ge 2 \\
\delta_i \Rightarrow \delta_j \qquad \delta_i - \delta_j \ge 0 \\
\delta_i \Leftrightarrow \delta_j \qquad \delta_i - \delta_j = 0$$

• More complex example:

$$\underbrace{\left(\delta_{1} \wedge \delta_{2}\right)}_{\delta_{a}} \Rightarrow \underbrace{\left(\delta_{3} \vee \delta_{4}\right)}_{\delta_{b}}$$

$$\left(\delta_{a} \Rightarrow \delta_{b}\right) \Leftrightarrow \left(\delta_{a} \ge \delta_{b}\right)$$

$$\left(\delta_{a} \Rightarrow \delta_{b}\right) \Leftrightarrow \left(\delta_{a} \ge \delta_{b}\right)$$

$$\delta_{a} = \left(\delta_{1} \wedge \delta_{2}\right) \Leftrightarrow \begin{cases} \delta_{a} \le \delta_{1}\\ \delta_{a} \le \delta_{2}\\ \delta_{1} + \delta_{2} \le 1 + \delta_{a} \end{cases}$$

$$\delta_{b} = \left(\delta_{3} \vee \delta_{4}\right) \Leftrightarrow \begin{cases} \delta_{b} \ge \delta_{1}\\ \delta_{b} \ge \delta_{2}\\ \delta_{1} + \delta_{2} > \delta_{b} \end{cases}$$

Geometric Approach

- Consider any logic expression $e_{\alpha} = \delta_{\alpha} (\delta_{\alpha} \rightarrow \delta_{\alpha})$
- Create the truth table

Calculate the convex hull

$$hull \left\{ \begin{bmatrix} 0\\0\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\1 \end{bmatrix} \right\} = \left\{ \begin{array}{ccc} \delta_2 - \delta_3 &\leq & 0\\ \delta_3 &\leq & 1\\ \delta_1 - \delta_2 + \delta_3 &\leq & 1\\ -\delta_1 - \delta_3 &\leq & -1 \end{array} \right\}$$

- Relations between logic and continuous variables modeled in a similar fashion
- Assume a bounded function $m \leq f(x) \leq M$
- Mathematical representation of the event generator:

$$([f(x) \le 0] \Leftrightarrow [\delta = 1]) \quad \Leftrightarrow \quad \begin{cases} f(x) \le M(1 - \delta) \\ f(x) \ge \epsilon + (m - \epsilon)\delta \end{cases}$$

• Mode selector and switched affine system:

$$x(t+1) = \begin{cases} f_1(x) \text{ if } (\delta_1 = 1) \\ \vdots \\ f_n(x) \text{ if } (\delta_n = 1) \end{cases}$$

• Rewrite as
$$x(t+1) = z_1 + \cdots + z_n$$
 with $z_i = f_i(x)\delta_i$

• Mode selector and switched affine system:

$$x(t+1) = \begin{cases} f_1(x) \text{ if } (\delta_1 = 1) \\ \vdots \\ f_n(x) \text{ if } (\delta_n = 1) \end{cases}$$

- Rewrite as $x(t+1) = z_1 + \cdots + z_n$ with $z_i = f_i(x)\delta_i$
- Corresponding mathematical representation:

$$z_{i} \leq M\delta_{i}$$

$$z_{i} \geq m\delta_{i}$$

$$z_{i} \leq f_{i}(x) - m(1 - \delta_{i})$$

$$z_{i} \geq f_{i}(x) - M(1 - \delta_{i})$$

Mixed Logical Dynamical (MLD) Systems

• Compact mathematical representation of hybrid systems

$$x(t+1) = Ax(t) + B_u u(t) + B_\delta \delta(t) + B_z z(t)$$

$$y(t) = Cx(t) + D_u u(t) + D_\delta \delta(t) + D_z z(t)$$

$$E_x x(t) + E_u u(t) + E_\delta \delta(t) + E_z z(t) \le E_0$$

- Involves continuous and binary states, inputs, outputs
- Auxiliary variables:
 - binary selectors $\delta(t)$
 - continuous variables z(t)
- Mixed-integer linear constraints:
 - include physical constraints on state, inputs, outputs
 - capture events, FSM, mode selection

Automatic Generation of MLD Descriptions?

• Example:

$$x(t+1) = \begin{cases} 0.8x(t) + u(t) & \text{if } x(t) \le 0\\ -0.8x(t) + u(t) & \text{if } x(t) > 0 \end{cases}$$

• Associate $(\delta(t) = 1) \Leftrightarrow (x(t) \le 0)$

- Rewrite state-update equation $x(t+1) = 1.6\delta(t)x(t) 0.8x(t) + u(t)$
- Introduce auxiliary variable $z(t) = \delta(t)x(t)$

x(t+1) = 1.6z(t) - 0.8x(t) + u(t)

• Formulate constraints: $z(t) \leq M(1 - \delta(t))$

$$z(t) \ge \epsilon + (m - \epsilon)\delta(t)$$

$$z(t) \le M\delta(t)$$

$$z(t) \ge m\delta(t)$$

$$z(t) \le x(t) - m(1 - \delta(t))$$

$$z(t) \le x(t) - M(1 - \delta(t))$$

2. HYSDEL

- 3. Piecewise Affine Models
- 4. MPC for Hybrid Systems
- 5. Closing Remarks

HYbrid Systems DEscription Language (HYSDEL)


```
SYSTEM switched_system {
    INTERFACE {
        STATE { REAL x [-10, 10]; }
        INPUT { REAL u [-1, 1]; }
    }
    IMPLEMENTATION {
        AUX { BOOL delta; REAL z; }
        AD { delta = (x <= 0); }
        DA { z = {IF delta THEN 0.8*x ELSE -0.8*x}; }
        CONTINUOUS { x = z + u; }
    }
}</pre>
```

Event Generator = AD Section

SYSTEM tank { **INTERFACE** STATE { **REAL** h; } INPUT { **REAL** Q; } OUTPUT { **BOOL** overflow; } PARAMETER { **REAL** k = 1;} /* end interface */ IMPLEMENTATION AUX { BOOL s; } AD { s = (h >= hmax);CONTINUOUS { h = h + k * Q;OUTPUT { overflow = s; } } /* end implementation */ } /* end system */

Mode Selector + Switched System = DA Section

Nonlinear amplification unit

$$u_{comp} = \begin{cases} u & (u < u_t) \\ 2.3u - 1.3u_t & (u \ge u_t) \end{cases}$$

```
SYSTEM motor {
    INTERFACE {
        STATE {
            REAL ucomp; }
        INPUT {
            REAL u [0, umax];}
        PARAMETER {
            REAL ut = 1;
            REAL ut = 1;
            REAL umax = 10;}
    } /* end interface */
```

```
IMPLEMENTATION {
    AUX {
        REAL unl;
        BOOL th; }
    AD {
        th = (u >= ut); }
    DA {
            unl = { IF th THEN 2.3*u - 1.3*ut
                ELSE u}; }
    CONTINUOUS {
            ucomp = unl; }
    } /* end implementation */
} /* end system */
```
Logic Expressions

$$u_{brake} = u_{alarm} \land (\neg s_{tunnel} \lor s_{fire})$$

$$s_{fire}
ightarrow u_{alarm}$$

```
SYSTEM train {
    INTERFACE {
        STATE {
            BOOL brake; }
        INPUT {
            BOOL alarm, tunnel, fire; }
    }
```

```
} /* end interface */
```

```
IMPLEMENTATION {
    AUX {
      BOOL decision; }
    LOGIC {
      decision =
         alarm & (~tunnel | fire); }
    AUTOMATA {
         brake = decision; }
    MUST {
         fire -> alarm; }
    } /* end implementation */
} /* end system */
```

Discrete-Time Dynamics

Forward Euler discretization: $u(k+1) = u(k) + \frac{T}{C}i(k)$ SYSTEM capacitorD {
 INTERFACE {
 STATE {
 REAL u; }
 PARAMETER {
 REAL R = 1e4;
 REAL C = 1e-4;
 REAL T = 1e-1; }
 } /* end interface */

IMPLEMENTATION {
 CONTINUOUS {
 u = u - T/C/R*i; }
 } /* end implementation */
} /* end system */

Finite State Machines


```
IMPLEMENTATION {
    AUTOMATA {
        closing = (uclose & closing) | (uclose & stop);
        stop = ustop | (uopen & closing) | (uclose & opening);
        opening = (uopen & stop) | (uopen & opening); }
    MUST {
        ~(uclose & uopen);
        ~(uclose & ustop);
        ~(uopen & ustop); }
    } /* end implementation */
} /* end system */
```

Constraints

 $0 \leq h \leq h_{max}$

SYSTEM watertank {
 INTERFACE {
 STATE {
 REAL h; }
 INPUT {
 REAL Q; }
 PARAMETER {
 REAL hmax = 0.3;
 REAL k = 1; }
 /* end interface */

```
IMPLEMENTATION {
    CONTINUOUS {
        h = h + k*Q; }
    MUST {
        h - hmax <= 0;
        -h <= 0; }
    } /* end implementation */
} /* end system */</pre>
```

HYSDEL

- Generates MLD mathematical description out of user-provided source file
- Translates arbitrary logic conditions into appropriate mixed-integer constraints
- Automatically calculates lower/upper bounds of linear expressions
- Allows to simulate MLD systems in MATLAB & Simulink
- GPL-based tool
- <u>http://control.ee.ethz.ch/~hybrid/hysdel/</u>

- 1. Discrete Hybrid Automata
- 2. HYSDEL
- 3. Piecewise Affine Models
- 4. MPC for Hybrid Systems
- 5. Closing Remarks

Piecewise Affine Systems

- Another popular framework for modeling of hybrid systems
- IF-THEN rules translate into an mixed-integer model
- arbitrary precision can be achieved by adding more linearizations

$$x_{k+1} = A_i x_k + B_i u_k + f_i \quad \text{IF} \quad x_k \in \mathcal{D}_i$$

PWA vs MLD Models

- MLD: natural for systems including finite state automata and logic expressions
- PWA: ideal for approximating nonlinear functions
- Under mild assumptions one can convert from MLD to PWA representation and vice versa

Case Study: CSTR

Nasty nonlinear dynamics

$$\dot{x} = \begin{bmatrix} -k_1(T)c_A - k_2(T)c_A^2 + (c_{in} - c_A)u_1 \\ k_1(T)(c_A - c_B) - c_Bu_1 \\ h(c_A, c_B, T) + (T_c - T)\alpha + (T_{in} - T)u_1 \\ (T - T_c)\beta + \gamma u_2 \end{bmatrix}$$

- Constraints on states and inputs
- Approximated by a PWA system with 32 local linearizations

Case Study: CSTR

Obtaining PWA Models

- The process of obtaining a PWA approximation of a nonlinear function includes:
 - selection of suitable linearization points
 - calculation of corresponding local linearization
 - determination of regions of validity
- Bottom line: easy to do in 1D, difficult in 2D, impossible in higher dimensions
- Question: can the process be automated?

Automatic Multiple Linearization of 1D Functions

Automatic Multiple Linearization of 1D Functions

Automatic Multiple Linearization of 2D Functions

Automatic Multiple Linearization of 2D Functions

Automatic Multiple Linearization of 2D Functions

The Theory Behind

- Consider a product of two variables $f = x_1 x_2$
- Define two auxiliary variables $u_1 = (x_1 + x_2), u_2 = (x_1 x_2)$
- Observe the equivalence: $f = \frac{1}{4}(u_1^2 u_2^2)$
- Now we have a difference of two nonlinear 1D functions, hence we are back to the 1D scenario

The Theory Behind

- Consider a product of two variables $f = x_1 x_2$
- Define two auxiliary variables $u_1 = (x_1 + x_2), \ u_2 = (x_1 x_2)$ Observe the equivalence: $f = \frac{1}{4}(u_1^2 u_2^2)$
- Now we have a difference of two nonlinear 1D functions, hence we are back to the 1D scenario

AUTOPROX: Automatic PWA Approximation Toolbox

- <u>http://www.kirp.chtf.stuba.sk/~sw/</u>
- Inputs:
 - symbolic representation of an arbitrary nonlinear function, e.g.

 $\sin(x_1^2 + \exp(1/x_2))(x_3 - \cos(|x_4|))$

- lower/upper bounds on variables
- number of linearization points
- Outputs:
 - individual linearizations
 - regions of validity
 - direct export to HYSDEL

Simplification of PWA Functions

Step 1: Hyperplane Arrangement

Step 2: Associate Boolean Literals

Step 4: Simplify the Function

Step 4: Simplify the Function

Step 5: Recover Regions

Step 5: Recover Regions

- 1. Discrete Hybrid Automata
- 2. HYSDEL
- 3. Piecewise Affine Models
- 4. MPC for Hybrid Systems
- 5. Closing Remarks

Mixed Logical Dynamical (MLD) Models

• Compact mathematical representation of hybrid systems

$$x(t+1) = Ax(t) + B_u u(t) + B_\delta \delta(t) + B_z z(t)$$

$$y(t) = Cx(t) + D_u u(t) + D_\delta \delta(t) + D_z z(t)$$

$$E_x x(t) + E_u u(t) + E_\delta \delta(t) + E_z z(t) \le E_0$$

- Involves continuous and binary states, inputs, outputs
- Auxiliary variables:
 - binary selectors $\delta(t)$
 - continuous variables z(t)
- Mixed-integer linear constraints:
 - include physical constraints on state, inputs, outputs
 - capture events, FSM, mode selection

MPC Formulation for MLD Models

$$\min \sum_{k=0}^{N-1} (\|Q_x x_{t+k}\|_p + \|Q_u u_{t+k}\|_p)$$
s.t.
$$x_{t+k+1} = A x_{t+k} + B_u u_{t+k} + B_\delta \delta_{t+k} + B_z z_{t+k}$$

$$E_x x_{t+k} + E_u u_{t+k} + E_\delta \delta_{t+k} + E_z z_{t+k} \le E_0$$

$$x_{t+k} \in \mathcal{X}$$

$$u_{t+k} \in \mathcal{U}$$

$$x_t = x(t)$$

$$\delta_{t+k} \in \{0,1\}^{n_\delta}, \ z_{t+k} \in \mathbb{R}^{n_z}$$

- The optimization problem is no longer convex!
 - mixed-integer QP for p=2
 - mixed-integer LP for $p=\{1,\infty\}$
- Can still be solved in "reasonable" time (GUROBI, CPLEX)

MPC for PWA Models

$$x_{k+1} = A_i x_k + B_i u_k + f_i \quad \text{IF} \quad x_k \in \mathcal{D}_i$$

- Key assumptions:
 - each dynamics is valid over a polytopic region $\mathcal{D}_i = \{x_k \mid D_i^x x_k \leq D_i^0\}$
 - the regions do not overlap, i.e. $\mathcal{D}_i \cap \mathcal{D}_j = \emptyset$
- Associate one binary selector per one region: $(\delta_i = 1) \Leftrightarrow (x_k \in \mathcal{D}_i)$
- Conversion to mixed-integer inequalities: $D_i^x x_k D_i^0 \leq M(1 \delta_i)$
- Add an exclusive-or condition: $\sum \delta_i = 1$
- Finally add: $x_{k+1} \le M(1 \delta_i) + (A_i x_k + B_i u_k + f_i)$

$$x_{k+1} \ge m(1-\delta_i) + (A_i x_k + B_i u_k + f_i)$$

MPC for PWA Models

$$\min \sum_{k=0}^{N-1} (\|Q_x x_{t+k}\|_p + \|Q_u u_{t+k}\|_p)$$
s.t.
$$x_{t+k+1} \leq M(1 - \delta_{t+k,i}) + (A_i x_{t+k} + B_i u_{t+k} + f_i)$$

$$x_{t+k+1} \geq M(1 - \delta_{t+k,i}) + (A_i x_{t+k} + B_i u_{t+k} + f_i)$$

$$D_i^x x_{t+k} - D_i^0 \leq M(1 - \delta_{t+k,i})$$

$$\sum_{i=1}^{N} \delta_{t+k,i} = 1$$

$$x_{t+k} \in \mathcal{X}$$

$$u_{t+k} \in \mathcal{U}$$

$$x_t = x(t)$$

$$\delta_{t+k,i} \in \{0,1\}$$

• Also non-convex, leads to MILP or MIQP problems

Smart Damping Materials

Control Design using Receding Horizon Optimal Control

- Receding Horizon Optimal Control (RHOC) solving MIQP online
- Simulations
 - Comparison: Heuristic vs. RHOC

Multi-mode
 broadband damping

uncontrolledRHOC

Direct Torque Control

Reduction of switching frequency by up to 45 % (on average 25 %)

Control of Anesthesia

Physical Setup:

- Patient undergoing surgery
- Analgesic infusion pump

Control Objectives:

- Minimize stress reaction to surgical stimulation (by controlling mean arterial pressure)
- Minimize drug consumption

Excellent performance of administration scheme, mean arterial pressure variations kept within bounds

Control of Anesthesia

Traction Control

Physical Setup:

- Improve driver's ability to control vehicle under conditions (wet or icy roads)
- Tire torque is nonlinear function of slip
- Uncertainties and constraints

Control Objectives:

• Maximize tire torque by keeping the tire slip close to the desired value

Tire Slip

Experimental results: 2000 Ford Focus on a Polished Ice Surface; Receding Horizon controller with 20 ms sampling time

Adaptive Cruise Control DAT

DAIMLERCHRYSLER

Physical Setup:

Control Objectives:

- Track reference speed
- Respect traffic rules
- Consider all objects on all lanes

Optimal state-feedback control law successfully implemented and tested on a research car Mercedes E430 with 80ms sampling time

Servo Motor Example

Servo Motor Example: Deadzone

Servo Motor Example

Minimize tracking error Considering measurements linear servo model deadzone nonlinearity constraints

Explicit MPC with 627 Regions

Optimal Control Law

Implementation

Real Measurements

Photo & data courtesy of Z. Hurák, CVUT Prague

$$\dot{p} = v$$
$$\dot{v} = i \frac{\alpha \Delta}{(\Delta^2 + \beta)^3}$$

$$\dot{p} = v \\ \dot{v} = i \frac{\alpha \Delta}{(\Delta^2 + \beta)^3}$$

PWA model

5 binaries for $F = \alpha \Delta / (\Delta^2 + \beta)^3$

2 binaries for iF

Discretization at 0.1 seconds

MPC

Min/max constraints on position, speed, current PWL cost function $\sum_{k=0}^{N-1} |p_{k+1} - r| + |v_{k+1}| + |i_k|$

Prediction horizon 5

Solved as a parametric MILP with 3 parameters

Explicit MPC with 917 Regions

Cross-Section Through Reference=1.0

Simulation Scenario

Simulation Results

- 1. Discrete Hybrid Automata
- 2. HYSDEL
- 3. Piecewise Affine Models
- 4. MPC for Hybrid Systems
- 5. Closing Remarks

Hybrid Systems

- Successful in practice (cf. the ABB story)
- Main claimed benefits:
 - systematic approach to modeling, simulation and control
 - good compromise between quality and complexity of the models when hybrid model is used as an approximator of a nonlinear system
 - many systems are naturally hybrid (e.g. electrical devices)
- Main criticism:
 - creating a good hybrid model requires lots of expertise
 - not 100% clear how to optimize model quality
 - mixed-integer MPC problems are difficult to solve (but still easier compared to full nonlinear optimization)

Open Challenges

Modeling

- Can a fully automated PWA-based modeling tool be achieved?
- Investigate behavior of mixed-integer solvers, figure out how to tune the model such that optimization runs significantly faster

• Control:

- All mixed-integer solvers are exponential in the worst case. Can we get a better bound on the runtime?
- Conditioning, ordering of constraints influences the runtime by 10x. Can we figure out what the optimal pre-processing should be?

Our Vision of Automated Hybrid Modeling

Software for Hybrid Systems

- Multi-Parametric Toolbox (includes HYSDEL2, YALMIP, HIT)
 - <u>http://control.ee.ethz.ch/~mpt/</u>
- HYSDEL
 - -<u>http://control.ee.ethz.ch/~hybrid/hysdel/</u>
- YALMIP
 - http://users.isy.liu.se/johanl/yalmip/
- Hybrid Identification Toolbox (HIT)
 - <u>http://www-rocq.inria.fr/who/Giancarlo.Ferrari-</u> <u>Trecate/HIT toolbox.html</u>

Interesting References

- Main paper on MLD systems & MPC
 - Bemporad & Morari: *Control of Integrating Logic, Dynamics, and Constraints*, Automatica 1999
- Book on hybrid systems
 - Lunze: Handbook of Hybrid Systems Control, Cambridge Press, 2009
- Book on explicit MPC for hybrid systems
 - Borrelli, Bemporad, Morari: *Predictive Control for Linear and Hybrid* Systems

http://www.mpc.berkeley.edu/mpc-course-material