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Considering current UPS capacities

Maximize minimal uptime

UPS discharge model
UPS & loads constraints
only 1 switch at a time
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UPS Optimization Example
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PS Optimization
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Considering current UPS capacities

Maximize minimal uptime

. If-then rules based
UPS discharge model

UPS & loads constraints
only 1 switch at a time
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Control theory

Real-valued signals

Differential equations

Hybrid
systems

-

Computer science

1 1

AP Ne

@

Binary signals
If-then-else rules
Finite-state machines
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Hybrid Systems In

Plants with binary controls (e.g. turbine on/off)

Practice

Logic constraints (e.g. when unit 1 is on, unit 2 must be off)
Multi-stage control (e.g. startup, normal operation, shutdown)
Systems with nonlinearities (e.g. hysteresis or dead zone)
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DC-DC Converter
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» Continuous states, discrete inputs

* Linear dynamics changes depending on the value of input
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Mechanical System with Backlash

) €
S~
N S <
N Sl S
SEACN- - S
= g S =
= SIS =
= S S
T1 K S =
= SIS =
S | & =
o . §
S

e Continuous states

* Linear dynamics switches between two modes:
- contact mode [(Ax =) A (21 > 22)] V [(Ax =€) A (T2 > T1)]
- backlash mode otherwise
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Chemical Reactor
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» Continuous states and inputs

* Nonlinear dynamics approximated by multiple linearizations
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Modeling of Hybrid Systems

- Suitable mathematical abstraction needed

- For simulations:

- detailed process description
- Individual modes usually involve nonlinear dynamics
- can be modeled e.g. using Stateflow / Simulink

- For control;

descriptive enough to capture behavior of the plant

simple enough to allow controller synthesis

dynamics in each mode approximated by an affine expression

due to presence of switches the overall dynamics is still nonlinear

mathematical representation of the whole system is needed
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1. Discrete Hybrid Automata

2. HYSDEL

3. Piecewise Affine Models
4. MPC for Hybrid Systems

5. Closing Remarks
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Discrete Hybrid Automata
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Mathematical Modeling of DHAs

- Two key issues:

- how to describe logic components (FSM, event generator, mode selector)

- how to capture the interaction between binary logic and continuous
dynamics?

- Key idea:
- convert logic expressions into algebraic expressions

- Examples:

51—
5;V6; i+ >1
5 NG; 546, > 02
5 =6, 0, —6;>0
58, 8, —6;=0
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Mathematical Modeling of DHAs

- More complex example:

(51 A\ 52) — (53 \V4 54)
N — N —

5& 5b
(50, — 5b) p— (5a > 55)

5a§51
5a:(51/\52) <~ 5& §52
01 + 02 <1+,

0p = 01
552(53V54) N 552(52
01 + 02 > 0y
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Geometric Approach

- Gonsider any logic expression, e.g.  d3 = (61 = d2)

- Create the truth table
01 | 0o | 03
Ol 01
O 1]1 o
1 1010
1 (1|1

- Calculate the convex hull

(fo] [o] [1] [v 52_?3 = 0
nattd o] 1] o] 1] = =

1 1 0 1 51_52_'_53 < 1

N . —01—03 < —1
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Mathematical Modeling of DHAs

- Relations between logic and continuous variables modeled in a
similar fashion

- Assume a bounded function m < f(z) < M

- Mathematical representation of the event generator:

f(z) < M(1-0)
flx) > e+ (m—e€)d

\
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Mathematical Modeling of DHAs

- Mode selector and switched affine system:

.

r(t+1)= 4"

| fal) i (8, = 1)

- Rewriteas x(t+1) =21+ -+ 2, with z; = f;(x)9;
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Mathematical Modeling of DHAs

- Mode selector and switched affine system:

/

r(t+1)= 4"

| fal) i (8, = 1)

- Rewriteas x(t+1) =21+ -+ 2, with z; = f;(x)9;
- Corresponding mathematical representation:

z; < Mo,

2; > mo;

zi < fi(x) —m(1 —9;)
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Mixed Logical Dynamical (MLD) Systems

* Compact mathematical representation of hybrid systems

r(t+1) = Ax(t) + Byu(t) + Bso(t) + B, z(t)
y(t) = Cx(t) + Dyu(t) + Dsd(t) + D 2(1)

E.x(t) + E,u(t) + Esé(t) + E.2(t) < Ej

- Involves continuous and binary states, inputs, outputs
- Auxiliary variables:

- binary selectors 6(t)

- continuous variables z(t)
- Mixed-integer linear constraints:

- Include physical constraints on state, inputs, outputs

- capture events, FSM, mode selection
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Automatic Generation of MLD Descriptions”?

- Example:
(0.82(t) +u(t) if z(t) <0

z(t+1) = <\_O,8x(t) +uf(t) if z(t) > 0

- Associate (6(t) =1) < (z(t) <0)
- Rewrite state-update equation z(t+ 1) = 1.60(¢)x(t) — 0.8x(t) + u(t)

- Introduce auxiliary variable — z(t) = 6(t)z(¢)
r(t+1) =1.62(t) — 0.8z(t) + u(t)

- Formulate constraints: z(t) < M (1 —6(t))
z(t) > e+ (m —€)d(t)
z(t) < Mo(t)
2(t) > mo(t)
z(t) < x(t) — m(1 —6(t))
2(t) < x(t) — M(1—46(1))
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2. HYSDEL
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HYbrid Systems DEscription Language
(HYSDEL)

source |_> HYSD_EL |_> MLD
code compiler model

SYSTEM switched system ({

INTERFACE {
STATE { REAL x [-10, 10], }
INPUT { REAL u [-1, 11];

}

IMPLEMENTATION ({
AUX { BOOL delta; REAL =z; }
AD { delta = (x <= 0); }
DA { z = {IF delta THEN 0.8*x ELSE -0.8*x}; }
CONTINUOUS { x = z + u; }

J
J
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—vent Generator = AD Section

tank {

{
{
REAL h; }
{
REAL Q; 1}
{
BOOL overflow; }
{
REAL k =1; }
} /* end interface */
{
{
BOOL s; }

{

S

(h >= hmax); }
{
h +k * Q; }
{
- ©1998, Rick Buncan overflow = s; }
} /* end implementation */
} /* end system */

h
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Mode Selector + Switched System = DA Section

Nonlinear amplification unit

»- . U (u < ut)
L T 1 2.3u — 1. 3w (u > we)

{ REAL unl;
REAL ucomp; } BOOL th; }
{ {
REAL u [0, umax];} th = (u >= ut); }
{ {
REAL ut = 1; unl = { IF th THEN 2.3*u - 1.3*ut
REAL umax = 10;} ELSE u}; }
} /* end interface */ {

ucomp = unl; }
} /* end implementation */
} /* end system */
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Logic Expressions

train {

{
{
BOOL brake; }

{

BOOL alarm, tunnel, fire; }

{

{
BOOL decision; }

{

decision =
alarm & (~tunnel | fire); }
{
Uprake — Ualarm VAN (_'Stunnel \VJ sz're) brake = decision; }

{

fire -> alarm; }
S fire = UWalarm }
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Discrete-Time Dynamics

capacitorD {

{
{

REAL u; }

{
REAL R = le4;
REAL C = le-4;
REAL T = le-1; }

_ _ _ u=u- T/C/R*i; }
Forward Euler discretization: }

w(k + 1) = u(k) + guk)
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Finite State Machines

u=stop

u=close
u=qgpen u=qopen
u=stop u=open

closing opening
u=close u=close
u=stop
outflow {

{
{
BOOL closing, stop, opening; }
{
BOOL uclose, uopen, ustop; }
} /* end of interface */

{

closing = (uclose & closing) | (uclose & stop):
stop = ustop | (uopen & closing) | (uclose & opening) ;
opening = (uopen & stop) | (uopen & opening); |}

{

~(uclose & uopen);
~(uclose & ustop)
~(uopen & ustop); }
} /* end implementation */
} /* end system */
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Constraints

SYSTEM watertank {
INTERFACE {
STATE {
REAL h; }
INPUT {
REAL Q; }
PARAMETER ({
REAL hmax = 0.3;
REAL k =1; }
} /* end interface */

L T ——— IMPLEMENTATION {
;;WKLW|H| ] CONTINUOUS ({
‘ l o — .
“nm.l[“llhllilllul . b= btk )
R g 5 e A -
i g _2 - hmax pa 8'. }

} /* end implementation */
} /* end system */
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HYSDEL

- Generates MLD mathematical description out of user-provided

source file

- Translates arbitrary logic conditions into appropriate mixed-integer

constraints

- Automatically calculates lower/upper bounds of linear expressions
- Allows to simulate MLD systems in MATLAB & Simulink

- GPL-based tool
- http://control.ee.ethz.ch/~hybrid/hysdel/
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3. Piecewise Affine Models
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f(x)

Piecewise Affine Systems

Another popular
framework for modeling
of hybrid systems

IF-THEN rules translate
INnto an mixed-integer
model

arbitrary precision can be
achieved by adding more
linearizations

rrr1 = Ajxg + Biug + f;

IF

CIZkEDi
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PWA vs MLD Models

- MLD: natural for systems including finite state automata and logic
EXPressions

- PWA: ideal for approximating nonlinear functions

- Under mild assumptions one can convert from MLD to PWA
representation and vice versa
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Case Study: CSTR

- Nasty nonlinear dynamics

—k1(T)ca — ko(T) % + (cin — ca)us
k1(T)(ca — cB) — cauq
hica,cg, T)+ (Te —T)a + (T, — T)uq
(T —T¢)B + vuz

- Constraints on states and inputs

- Approximated by a PWA system with 32 local linearizations
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Obtaining PWA Models

- The process of obtaining a PWA approximation of a nonlinear
function includes:

- selection of suitable linearization points
- calculation of corresponding local linearization
- determination of regions of validity

- Bottom line: easy to do in 1D, difficult in 2D, impossible in higher
dimensions

- Question: can the process be automated”?

f(x)
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Automatic Multiple Linearization of 1D Functions

7 linearization points, approximation error 8%

I | |

I |

0.8 -
0.6
0.4
0.2
sin(x)
-0.2 |
0.4k
-0.6 -

-0.8 -
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Automatic Multiple Linearization of 1D Functions

11 linearization points, approximation error 2%

| | | | | | I | |

0.8 -
0.6
0.4
0.2
sin(x)
-0.2 |
0.4k
-0.6 -

-0.8 -
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Automatic Multiple Linearization of 2D Functions
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Automatic Multiple Linearization of 2D Functions

PWA approximation using 10 linearizations

08

\\\
0.4 _ \
02 \\\“\ \V - ‘\ \t\\\e\‘\“/ \“ \

il \\\\\\\\ ',,//”,
“““’ g o ///,,,/ 1

\\\\\“"’44"”’&%\\\\\\\\ i )

y1 x1




Automatic Multiple Linearization of 2D Functions

Approximation error < 0.1 %

3
x10
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The Theory Behind

Consider a product of two variables f = z12-

Define two auxiliary variables u1 = (x1 + x2), us = (x1 — x2)

Observe the equivalence: [ = (u1 — u3)

Now we have a difference of two nonhnear 1D functions, hence
we are back to the 1D scenario

Friday, April 19, 13



The Theory Behind

Consider a product of two variables = T1Z2
Define two auxiliary variables ull_ x1+ Ta), us = (r1 — o
Observe the equivalence: =7 ui — us

Now we have a difference of two nonlinear 1D functions, hence
we are back to the 1D scenario
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AUTOPROX: Automatic PWA Approximation
Toolbox

- http://www.kirp.chtf.stuba.sk/~sw/

- Inputs:

- symbolic representation of an arbitrary nonlinear function, e.g.

sin(x% + eXp(l/»’Ez))(fvs — COS(‘MD)

- lower/upper bounds on variables
- number of linearization points

- Outputs:
- individual linearizations

- regions of validity
- direct export to HYSDEL
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Simplification of PWA Functions

252 regions 39 regions
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Step 1: Hyperplane Arrangement

3

2 4

7

—+++
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Step 2: Associate

2/

Boolean Literals

’ 4

01020304

—+++

01090304
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Step 3: Represent Regions to Merge by Logic

Functions ,
2

01090304

White regions = 31325354 —+ 31525354 —+ 31525354 -+ 51525354
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Step 4: Simplify the Function

3
2 A 4

Oq

White regions = 1203
g g 04(03 + 53) -+ 525354(51 -+ 51)

/\
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Step 4: Simplify the Function

3
2 A 4

White regions =
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Step 5: Recover Regions

3

01020304

—+++

01090304

Oq

03 + 53) + 020304 (01 + 51)
— 813254 525354

White regions = 1203
510204

/\
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Step 5: Recover Regions

3

51020304

—+++

01090304

Oq

White regions = 4 + 51525354 -+ 51525354 -+ 51525354

53-+-53)-+-525354(51-+-51)
4 H 020304

Q'JQ'JQ')
/\
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4. MPC for Hybrid Systems
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Mixed Logical Dynamical (MLD) Models

* Compact mathematical representation of hybrid systems

r(t+1) = Ax(t) + Byu(t) + Bso(t) + B, z(t)
y(t) = Cx(t) + Dyu(t) + Dsd(t) + D 2(1)

E.x(t) + E,u(t) + Esé(t) + E.2(t) < Ej

* Involves continuous and binary states, inputs, outputs
* Auxiliary variables:

* binary selectors  §(¢)

e continuous variables  z(t)
* Mixed-integer linear constraints:

* Include physical constraints on state, inputs, outputs

* capture events, FSM, mode selection
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MPC Formulation for MLD Models

N—1

min Z (’\Qxflft+k\\p + HQuut-l—ka)

k=0
S.t. Titk+1 = ATy + Byl + Bsoryrr + Boziqk

Eioxipry + Byt + Esdiin + B zepr < Eo
Tiip € X

Utk € U

ry = x(t)

Orrr € {0,110, 240 p € R™

* The optimization problem is no longer convex!

- mixed-integer QP for p = 2
- mixed-integer LP for p = {1, OO}

* Can still be solved in “reasonable” time (GUROBI, CPLEX)
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MPC for PWA Models

Tr+1 = Az + Biug + fi  IF  xk € D;

- Key assumptions:

- each dynamics is valid over a polytopic region  D; = {x), | D¥z), < D)}
- the regions do not overlap, i.e. D; ND; = 0

- Associate one binary selector per one region:  (§; = 1) < (xx € D;)
- Conversion to mixed-integer inequalities: D%z, — D? < M (1 — §;)
. Add an exclusive-or condition:  » & =1
+ Finally add:  @p41 < M(1—6;) + (Ajxg + Biug + f;)

Trr1 > m(l —8;) + (Aixp + Biug + f3)
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min

S.t.

MPC for PWA

N—-1

Models

D 1Quzerlly + 1Quurkll)

k=0
Tirrr1 < M(1— pqpi)

- (Aiey g -

Tirrqr1 > M1 — dpqpq)

- Biut—i—k n

- (Aixt—l—k -

Dfxiyr, — DY < M(1—6pyp)

- fi)

- Biut—l—k n

* Also non-convex, leads to MILP or MIQP problems

- fi)
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Smart Damping Materials

* Control Design using Receding Horizon Optimal Control
— Receding Horizon Optimal Control (RHOC) solving MIQP online

Heuristic Heuristic
° ° > 01,
e Simulations 2
o 0
— Comparison: = oo I
Heuristic vs. RHOC o RHOC
Q
HHH i
. ° 015 10 20 30 40
0 1 2 Tlme 6 7 8 9 10 Time [S]
2
— Multi-mode 3
° q) —
broadband damping ~ o | g
0 5 10 15 20 25 30 %
o @
— uncontrolled S 5
— RHOC z S
0 5 10 15 20 25 30 0 05 1 15 2 25 3
Time [s] Frequency [Hz]
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Direct Torque Control

é n ; hw““mni Our MPC :1’100

load
0 40 50 60 70 80 O
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Control of Anesthesia NELREITAL

Physical Setup:

« Patient undergoing surgery

* Analgesic infusion pump

Control Objectives:

e Minimize stress reaction to

surgical stimulation
(by controlling mean arterial pressure)

*  Minimize drug consumption

Excellent performance of administration scheme,
mean arterial pressure variations kept within bounds
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Control of Anesthesia

Friday, April 19, 13



Physical Setup:

e Improve driver's ability to control vehicle under
conditions (wet or i1cy roads)

e Tire torque 1s nonlinear function of slip

 Uncertainties and constraints

Traction Control

]

=

(@'
Control Objectives: S| T

. . . . 0 Piecewise affi
« Maximize tire torque by keeping the tire slip is ag;izzilffafio;ne
close to the desired value >
Tire Slip

Experimental results: 2000 Ford Focus on a Polished Ice Surface;

Receding Horizon controller with 20 ms sampling time
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Adaptive Cruise Control DAIMLERCHRYSLER

Physical Setup:

‘ Sensors: IRScanner,
Cameras, Radar

Longitudinal and Lateral
Control

iiVirtual Traffic

Scene

Control Objectives:

« Track reference speed ego-car

=~
2
5

* Respect traffic rules

* Consider all objects on all lanes

Optimal state-feedback control law successfully implemented and tested on

a research car Mercedes E430 with 80ms sampling time
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voltage

Servo Motor

—xample

angle

angular velocity
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Servo Motor Example: Deadzone

(m(v—c) ifv>c
Hybrid system! vp =< 0 if —c<v<ec
m(v+c) ifv<—c
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Servo Motor Example

Minimize tracking error
Considering measurements
linear servo model
deadzone nonlinearity
constraints
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Explicit MPC with 627 Regions

Reference angle [°]

100

Angle [°]

0 -100 Angular velocity [°/s]
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Regions

-100

Friday, April 19, 13



Optimal Control Law

Optimal input [V]

360 100 Angular velocity [°/s]
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Implementation

360

90

-100 0 100
Angular velocity [°/s]
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Real Measurements
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Magnetic Manipulator

Photo & data courtesy of Z. Hurak, CVUT Prague
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Magnetic Manipulator

v
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Magnetic Manipulator

v
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Magnetic Manipulator

PWA model
5 binaries for F' = aA/(A245)3

2 binaries for 1 F

Discretization at 0.1 seconds

MPC

Min/max constraints on position, speed, current

PWL cost function > po |Pk+1 — 7| + |vks1] + lix]
Prediction horizon 5

Solved as a parametric MILP with 3 parameters
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Reference

“xplicit MPC with 917

Position

Regions
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Cross-Section Through Reference=1.0

1.5

Position
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Simulation Scenario
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Simulation Results

I - -
™ = =
T

T =

’ Position

0p)
-+
C uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu e
)
| .
L -l E m = . = - -----!---------------.- ----------:------- - o E E EE o E o Eom o
D)
O

Friday, April 19, 13



5. Closing Remarks
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Hybrid Systems

* Successful in practice (cf. the ABB story)

* Main claimed benefits:

- systematic approach to modeling, simulation and control

- good compromise between quality and complexity of the models when
hybrid model is used as an approximator of a nonlinear system

- many systems are naturally hybrid (e.g. electrical devices)
* Main criticism:
- creating a good hybrid model requires lots of expertise

- not 100% clear how to optimize model quality

- mixed-integer MPC problems are difficult to solve (but still easier
compared to full nonlinear optimization)
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Open Challenges

* Modeling

- Can a fully automated PWA-based modeling tool be achieved?

- Investigate behavior of mixed-integer solvers, figure out how to tune the
model such that optimization runs significantly faster

e Control:

- All mixed-integer solvers are exponential in the worst case. Can we get a
better bound on the runtime?

- Conditioning, ordering of constraints influences the runtime by 10x. Can
we figure out what the optimal pre-processing should be?
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Our Vision of Automated Hylbrid Modeling

Simulink/StateFlow

Nonlinear | | Continuous
Plants Time

1 | 1

Approximation

Logic

Textual Description

1 |

HYSDEL

|

MLD, PWA
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Software for Hybrid Systems

* Multi-Parametric Toolbox (includes HYSDEL2, YALMIP, HIT)
- http://control.ee.ethz.ch/~mpt/

* HYSDEL
—http://control.ee.ethz.ch/~hybrid/hysdel/

* YALMIP

—http://users.isvy.liu.se/Johanl/valmip/

* Hybrid |dentification Toolbox (HIT)

- http://www—rocg.inria.fr/who/Giancarlo.Ferrari-

Trecate/HIT toolbox.html
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Interesting References

* Main paper on MLD systems & MPC

- Bemporad & Morari: Control of Integrating Logic, Dynamics, and
Constraints, Automatica 1999

* Book on hybrid systems
- Lunze: Handbook of Hybrid Systems Control, Cambridge Press, 2009

* Book on explicit MPC for hybrid systems

- Borrelli, Bemporad, Morari: Predictive Control for Linear and Hybrid
Systems

http://www.mpc.berkeley.edu/mpc—-course-material
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