
Michal Kvasnica

TEMPO Workshop on
Software Development

“An expert is a person who has made all the mistakes
that can be made in a very narrow field.”

Niels Bohr, Nobel price winner (1922)

The Multi-Parametric Toolbox (MPT)

Developed since 2002

40,000+ installations world-wide

118,503 lines of code in 2,169 files

5 main developers

Lin
es

 o
f c

od
e

0

35000

70000

105000

140000

2002 2004 2006 2008 2010 2012 2014 2016

Agenda

Today
- version control systems and collaborative development
- Mercurial, Git, Bitbucket, GitHub
- providing support

Tomorrow
- unit testing
- documentation
- dissemination

Set of DOs and DONTs

Agenda

Today
- version control systems and collaborative development
- Mercurial, Git, Bitbucket, GitHub
- providing support

Tomorrow
- unit testing
- documentation
- dissemination

DONT #1: Do NOT Use Archives

mpt12.zip
mpt1_2_2.zip
mpt_ver04.zip
mpt_ver11R1.zip
mpt_ver141.zip
mpt13r1.zip
mpt_ver02.zip
mpt_ver05.zip
mpt_ver11R2.zip
mpt_ver144.zip
mpt14.zip
mpt_ver03.zip
mpt_ver11.zip
mpt_ver11R3.zip
mptv122.zip

Main problems:
- does not protect against accidental deletion
- linear development (cannot release until all

new features are complete)
- single-user development
- difficult to find a change that introduced a bug

Archives do not give answers to:
- what has changed between versions?
- who made the changes?
- when and why were the changes made?
- which version is the latest stable release?

DO #1: Use a Version Control System
Main objectives:

- record changes over time
- recall a specific version later
- enable collaboration
- allow nonlinear development

DO #1: Use a Version Control System

RepositoryWorking directory

file1
file2

Main objectives:
- record changes over time
- recall a specific version later
- enable collaboration
- allow nonlinear development

DO #1: Use a Version Control System

RepositoryWorking directory

file1
file2

Version 1
file1,file2commit

Main objectives:
- record changes over time
- recall a specific version later
- enable collaboration
- allow nonlinear development

DO #1: Use a Version Control System

RepositoryWorking directory

change1
file2

Version 1
file1,file2

Version 2
change1,file2commit

Main objectives:
- record changes over time
- recall a specific version later
- enable collaboration
- allow nonlinear development

DO #1: Use a Version Control System

RepositoryWorking directory

change1
file2
file3

Version 1
file1,file2

Version 2
change1,file2

Version 3
change1,file2,file3commit

Main objectives:
- record changes over time
- recall a specific version later
- enable collaboration
- allow nonlinear development

Sidenote: VCS is for Source Code
Typically stored in VCS:

- source files
- documentation (markdown, html, LaTeX)
- binary files that do not change (e.g. logos)

Not to be stored:
- automatically generated files (PDFs from LaTeX, compiled binaries, etc.)
- Word documents
- files containing passwords! (even when you remove the data from the

top version, it stays in the repository forever in previous versions)

Sidenote: Different Storage Models

Deltas:
(Mercurial)

Snapshots:
(Git)

https://git-scm.com/book/en/v2/Getting-Started-Git-Basics

https://git-scm.com/book/en/v2/Getting-Started-Git-Basics

DO #1: Use a Version Control System

RepositoryWorking directory

change1
file2
file3

Version 1
file1,file2

Version 2
change1,file2

Version 3
change1,file2,file3

Main objectives:
- record changes over time
- recall a specific version later
- enable collaboration
- allow nonlinear development

file accidentally
deleted

DO #1: Use a Version Control System

RepositoryWorking directory

change1
file2
file3

Version 1
file1,file2

Version 2
change1,file2

Version 3
change1,file2,file3update

Main objectives:
- record changes over time
- recall a specific version later
- enable collaboration
- allow nonlinear development

file restored

DO #1: Use a Version Control System

RepositoryWorking directory

change1
file2

Version 1
file1,file2

Version 2
change1,file2update

Version 3
change1,file2,file3

Main objectives:
- record changes over time
- recall a specific version later
- enable collaboration
- allow nonlinear development

DO #1: Use a Version Control System

RepositoryWorking directory

file1
file2

Version 1
file1,file2update

Version 3
change1,file2,file3

Main objectives:
- record changes over time
- recall a specific version later
- enable collaboration
- allow nonlinear development

Version 2
change1,file2

DO #1: Use a Version Control System
Main objectives:

- record changes over time
- recall a specific version later
- enable collaboration
- allow nonlinear development

Alice

Repository

Working directory

updatecommit

Bob

DO #1: Use a Version Control System

Alice

Repository

Working directory

Bob

?

Working directory

Main objectives:
- record changes over time
- recall a specific version later
- enable collaboration
- allow nonlinear development

Centralized VCS (CVS, SVN, Perforce)

Central repository

Working directory Working directory

Main idea: use a centralized repository (public server)

Alice Bob

Centralized VCS (CVS, SVN, Perforce)

Working directory Working directory

Main idea: use a centralized repository (public server)

Central repository

checkout

Alice Bob

Centralized VCS (CVS, SVN, Perforce)

Working directory Working directory

Main idea: use a centralized repository (public server)

Central repository

commit

Alice Bob

Centralized VCS (CVS, SVN, Perforce)

Working directory Working directory

Main idea: use a centralized repository (public server)

Central repository

update

Alice Bob

Centralized VCS (CVS, SVN, Perforce)

Working directory Working directory

Main idea: use a centralized repository (public server)

Central repository

commit update

Alice Bob

Centralized VCS (CVS, SVN, Perforce)

Working directory Working directory

Main idea: use a centralized repository (public server)

Problems:
- requires permanent internet connection (+single point of failure)
- access rights management
- communication ("Hey, I made a change, you need to update")
- only one person can commit at a time

Central repository

Alice Bob

DONT #2: Never use a Centralized VCS

Working directory Working directory

Main idea: use a centralized repository (public server)

Problems:
- requires permanent internet connection (+single point of failure)
- access rights management
- communication ("Hey, I made a change, you need to update")
- only one person can commit at a time

Central repository

Alice Bob

DONT #2: Never use a Centralized VCS

Working directory Working directory

Main idea: use a centralized repository (public server)

Problems:
- requires permanent internet connection (+single point of failure)
- access rights management
- communication ("Hey, I made a change, you need to update")
- only one person can commit at a time

Central repository

Alice Bob

Sidenote: Merges

function sayhello()
disp('Hello, world!')
end

Central repository

commitAlice Bob

Sidenote: Merges

function sayhello()
disp('Hello, world!')
end

Central repository

function sayhello()
disp('Hello, world!')
end

updateAlice Bob

Sidenote: Merges

function sayhello()
disp('Good morning!')
end

Central repository

function sayhello()
disp('Hello, world!')
disp('Bye')
end

commitcommit

Centralized VCS will prevent simultaneous commits
- in fact, "update" locks the repository for a particular user

Alice Bob

Sidenote: Merges

function sayhello()
disp('Good morning!')
end

Central repository

function sayhello()
disp('Hello, world!')
disp('Bye')
end

Centralized VCS will prevent simultaneous commits
- in fact, "update" locks the repository for a particular user

Resolution:
- Alice must wait for Bob to commit
- Alice then updates her working directory with Bob' changes
- Alice must "merge" Bob's changes with hers

Alice Bobcommit

Sidenote: Merges

function sayhello()
disp('Good morning!')
disp('Bye')
end

Central repository

function sayhello()
disp('Hello, world!')
disp('Bye')
end

Centralized VCS will prevent simultaneous commits
- in fact, "update" locks the repository for a particular user

Resolution:
- Alice must wait for Bob to commit
- Alice then updates her working directory with Bob' changes
- Alice must "merge" Bob's changes with hers

update+mergeAlice Bob

Sidenote: Merges

function sayhello()
disp('Good morning!')
disp('Bye')
end

Central repository

function sayhello()
disp('Hello, world!')
disp('Bye')
end

Centralized VCS will prevent simultaneous commits
- in fact, "update" locks the repository for a particular user

Resolution:
- Alice must wait for Bob to commit
- Alice then updates her working directory with Bob' changes
- Alice must "merge" Bob's changes with hers

commitAlice Bob

Sidenote: Merges

function sayhello()
disp('Good morning!')
disp('Bye')
end

Central repository

function sayhello()
disp('Good morning!')
disp('Bye')
end

Centralized VCS will prevent simultaneous commits
- in fact, "update" locks the repository for a particular user

Resolution:
- Alice must wait for Bob to commit
- Alice then updates her working directory with Bob' changes
- Alice must "merge" Bob's changes with hers

updateAlice Bob

Distributed VCS (Mercurial, Git)
Main idea: everybody has a local copy of the repository

Repository

Working directory

Repository

Working directory

updatecommit

Alice Bob

updatecommit

Distributed VCS (Mercurial, Git)

Repository

Working directory

Main idea: everybody has a local copy of the repository

Repository

Alice Bob

Distributed VCS (Mercurial, Git)

Repository

Working directory

Main idea: everybody has a local copy of the repository

Repositoryclone

Alice Bob

Distributed VCS (Mercurial, Git)

Repository

Working directory

Main idea: everybody has a local copy of the repository

Repository

Working directory

Alice Bob

Distributed VCS (Mercurial, Git)

Repository

Working directory

Main idea: everybody has a local copy of the repository

Repository

Working directory

checkout

Alice Bob

Distributed VCS (Mercurial, Git)

Repository

Working directory

Main idea: everybody has a local copy of the repository
- every developer can commit/update at any time to his/her repository
- no permanent connection required

Repository

Working directory

updatecommit

Alice Bob

updatecommit

Distributed VCS (Mercurial, Git)

Alice

Repository

Working directory

Bob

Main idea: everybody has a local copy of the repository
- every developer can commit/update at any time to his/her repository
- no permanent connection required

Repository

Working directory

push

update commit

Distributed VCS (Mercurial, Git)

Alice

Repository

Working directory

Bob

Main idea: everybody has a local copy of the repository
- every developer can commit/update at any time to his/her repository
- no permanent connection required

Repository

Working directory

pull

update

Distributed VCS (Mercurial, Git)

Repository

Working directory

Main idea: everybody has a local copy of the repository
- every developer can commit/update at any time to his/her repository
- no permanent connection required

Repository

Working directory

pull

update

Alice Bob

commit

Distributed VCS (Mercurial, Git)

Repository

Working directory

Main idea: everybody has a local copy of the repository
- every developer can commit/update at any time to his/her repository
- no permanent connection required

Rule of thumb: never push to a remote repository, let its owner
pull from yours

Repository

Working directory

pull

Alice Bob
push

Distributed VCS (Mercurial, Git)

Repository

Working directory

Main idea: everybody has a local copy of the repository
- every developer can commit/update at any time to his/her repository
- no permanent connection required

Questions:
- access rights management?
- communication ("Hey, I made a change, you need to update")?
- which repository is the "blessed" one for production code?

Repository

Working directory

Alice Bob

Distributed VCS (Mercurial, Git)

Repository

Working directory

Main idea: everybody has a local copy of the repository
- every developer can commit/update at any time to his/her repository
- no permanent connection required

Questions:
- access rights management?
- communication ("Hey, I made a change, you need to update")?
- which repository is the "blessed" one for production code?

Repository

Working directory

Alice Bob

Distributed VCS Workflows

Repository

Working directory

Three possible workflows:
- centralized
- integration manager
- dictator / lieutenants

Repository

Working directory

Alice Bob

Centralized Workflow

Repository

Working directory

Idea: use a central "blessed" repository
- but each developer has his/her own copy (no single point of failure)

Repository

Working directory

Blessed repository

Alice Bobpush/pull push/pull

Centralized Workflow

Idea: use a central "blessed" repository
- but each developer has his/her own copy (no single point of failure)

Problems:
- cannot push conflicting changes

Blessed repository

Alice Bob

function sayhello()
disp('Hello, world!')
end

function sayhello()
disp('Hello, world!')
end

Centralized Workflow

Idea: use a central "blessed" repository
- but each developer has his/her own copy (no single point of failure)

Problems:
- cannot push conflicting changes

Blessed repository

Alice Bob

function sayhello()
disp('Good morning!')
end

function sayhello()
disp('Hello, world!')
disp('Bye')
end

pushpush

Centralized Workflow

Idea: use a central "blessed" repository
- but each developer has his/her own copy (no single point of failure)

Problems:
- cannot push conflicting changes

Blessed repository

Alice Bob

function sayhello()
disp('Good morning!')
end

function sayhello()
disp('Hello, world!')
disp('Bye')
end

push

Centralized Workflow

Idea: use a central "blessed" repository
- but each developer has his/her own copy (no single point of failure)

Problems:
- cannot push conflicting changes

Blessed repository

Alice Bob

function sayhello()
disp('Good morning!')
end

function sayhello()
disp('Good morning!')
disp('Bye')
end

pull+merge

Centralized Workflow

Idea: use a central "blessed" repository
- but each developer has his/her own copy (no single point of failure)

Problems:
- cannot push conflicting changes

Blessed repository

Alice Bob

function sayhello()
disp('Good morning!')
end

function sayhello()
disp('Good morning!')
disp('Bye')
end

push

Centralized Workflow

Idea: use a central "blessed" repository
- but each developer has his/her own copy (no single point of failure)

Problems:
- cannot push conflicting changes

Blessed repository

Alice Bob

function sayhello()
disp('Good morning!')
disp('Bye')
end

function sayhello()
disp('Good morning!')
disp('Bye')
end

pull+merge

Centralized Workflow

Idea: use a central "blessed" repository
- but each developer has his/her own copy (no single point of failure)

Problems:
- cannot push conflicting changes (merging is required, often difficult!)
- only suitable for a small number of developers (<5)

Blessed repository

Alice Bob

function sayhello()
disp('Good morning!')
disp('Bye')
end

function sayhello()
disp('Good morning!')
disp('Bye')
end

Integration Manager Workflow

Blessed
repository

Integration
manager

Alice
private

Bob
private

Eve
private

push pull+update

pull+update

pull+update

Idea: use a central "blessed" repository:
- but only the integration manager can push to it

Integration Manager Workflow

Blessed
repository

Integration
manager

Alice
private

Bob
private

Eve
private

selective pulls+merge

Idea: use a central "blessed" repository:
- but only the integration manager can push to it
- the manager cherry-picks changes and handles merges

Integration Manager Workflow

Blessed
repository

Integration
manager

Alice
private

Bob
private

Eve
private

Idea: use a central "blessed" repository:
- but only the integration manager can push to it
- the manager cherry-picks changes and handles merges

Problem: usually cannot pull from private repositories

Integration Manager Workflow

Blessed
repository

Alice
public

Bob
public

Eve
public

Integration
manager

Alice
private

Bob
private

Eve
private

Idea: use a central "blessed" repository:
- but only the integration manager can push to it
- the manager cherry-picks changes and handles merges

Problem: usually cannot pull from private repositories

Solution: every developer has a public version of his/her repository

push push push

Integration Manager Workflow

Blessed
repository

Alice
public

Bob
public

Eve
public

Integration
manager

Alice
private

Bob
private

Eve
private

Idea: use a central "blessed" repository:
- but only the integration manager can push to it
- the manager cherry-picks changes and handles merges

Problem: usually cannot pull from private repositories

Solution: every developer has a public version of his/her repository

pull+merge
pull+merge

pull+merge

Integration Manager Workflow

Blessed
repository

Alice
public

Bob
public

Eve
public

Integration
manager

Alice
private

Bob
private

Eve
private

Idea: use a central "blessed" repository:
- but only the integration manager can push to it
- the manager cherry-picks changes and handles merges

Problem: usually cannot pull from private repositories

Solution: every developer has a public version of his/her repository

push

Integration Manager Workflow

Blessed
repository

Alice
public

Bob
public

Eve
public

Integration
manager

Alice
private

Bob
private

Eve
private

Idea: use a central "blessed" repository:
- but only the integration manager can push to it
- the manager cherry-picks changes and handles merges

Problem: usually cannot pull from private repositories

Solution: every developer has a public version of his/her repository

Integration Manager Workflow

Blessed
repository

Alice
public

Bob
public

Eve
public

Integration
manager

Alice
private

Bob
private

Eve
private

Idea: use a central "blessed" repository:
- but only the integration manager can push to it
- the manager cherry-picks changes and handles merges

Problem: usually cannot pull from private repositories

Solution: every developer has a public version of his/her repository

Dictator / Lieutenants Workflow

Blessed
repository

Alice
public

Bob
public

Eve
public

Lieutenant

Idea: use multiple integration managers (aka lieutenants)
- each lieutenant is usually responsible for one module
- used for big projects (e.g. the Linux kernel, Python)

Dictator

Lieutenant

John
public

Dictator / Lieutenants Workflow

Blessed
repository

Alice
public

Bob
public

Eve
public

Lieutenant

Idea: use multiple integration managers (aka lieutenants)
- each lieutenant is usually responsible for one module
- used for big projects (e.g. the Linux kernel, Python)

Dictator

Lieutenant

John
public

pull+merge pull+merge

Dictator / Lieutenants Workflow

Blessed
repository

Alice
public

Bob
public

Eve
public

Lieutenant

Idea: use multiple integration managers (aka lieutenants)
- each lieutenant is usually responsible for one module
- used for big projects (e.g. the Linux kernel, Python)

Dictator

Lieutenant

John
public

pull+merge pull+merge

Dictator / Lieutenants Workflow

Blessed
repository

Alice
public

Bob
public

Eve
public

Lieutenant

Idea: use multiple integration managers (aka lieutenants)
- each lieutenant is usually responsible for one module
- used for big projects (e.g. the Linux kernel, Python)

Dictator

Lieutenant

John
public

push

Dictator / Lieutenants Workflow

Blessed
repository

Alice
public

Bob
public

Eve
public

Lieutenant

Idea: use multiple integration managers (aka lieutenants)
- each lieutenant is usually responsible for one module
- used for big projects (e.g. the Linux kernel, Python)

Dictator

Lieutenant

John
public

DO #2: Use the Integration Manager Workflow
Main objectives:

- record changes over time
- recall a specific version later
- enable collaboration
- allow nonlinear development

Blessed
repository

Alice
public

Bob
public

Eve
public

Integration
manager

Alice
private

Bob
private

Eve
private

DO #3: Choose a Proper Development Model
Main objectives:

- record changes over time
- recall a specific version later
- enable collaboration
- allow nonlinear development

DO #3: Choose a Proper Development Model
Development models:

- linear
- hotfix branches
- "master" trunk and "develop" branch
- Driessen's branching model

DO #3: Choose a Proper Development Model
Development models:

- linear
- hotfix branches
- "master" trunk and "develop" branch
- Driessen's branching model

Stable
release

Features,
bug fixes

1.0 1.1 1.2

DO #3: Choose a Proper Development Model
Development models:

- linear
- hotfix branches
- "master" trunk and "develop" branch
- Driessen's branching model

Problem: release with unfinished features is not desired

New cool
feature

(unfinished)

Nasty bug
fixed, needs
immediate

release

1.0 1.1 1.2

DO #3: Choose a Proper Development Model
Development models:

- linear
- hotfix branches
- "master" trunk and "develop" branch
- Driessen's branching model

Problem: release with unfinished features is not desired

Solution: branch from latest stable release, only merge with finished
features

1.0 1.1

1.2branch

DO #3: Choose a Proper Development Model
Development models:

- linear
- hotfix branches
- "master" trunk and "develop" branch
- Driessen's branching model

Problem: release with unfinished features is not desired

Solution: branch from latest stable release, only merge with finished
features

1.0 1.1

1.2

New cool
feature

completed

branch
merge

1.3

DO #3: Choose a Proper Development Model
Development models:

- linear
- hotfix branches
- "master" trunk and "develop" branch
- Driessen's branching model

Problem: release with unfinished features is not desired

Solution: branch from latest stable release, only merge with finished
features (but then the production code is the second-class citizen)

1.0 1.2 1.3

1.1

1.6

1.4 1.5

DO #3: Choose a Proper Development Model
Development models:

- linear
- hotfix branches
- "master" trunk and "develop" branch
- Driessen's branching model

Idea: the trunk always contains production-ready code

1.0 1.1

Hotfix release

Stable
release

1.2 1.4 1.5 master trunk

develop branch

1.3

DO #3: Choose a Proper Development Model
Development models:

- linear
- hotfix branches
- "master" trunk and "develop" branch
- Driessen's branching model

Idea: the trunk always contains production-ready code

Problem: what if we work on multiple new features in parallel?

1.0 1.1

Hotfix release

Stable
release

1.2 1.4 1.5 master trunk

develop branch

1.3

DO #3: Choose a Proper Development Model
Development models:

- linear
- hotfix branches
- "master" trunk and "develop" branch
- Driessen's branching model

http://nvie.com/posts/
a-successful-git-

branching-model/

http://nvie.com/posts/a-successful-git-branching-model/

DO #3: Use a Proper Development model

Development models:
- linear
- hotfix branches for projects with infrequent changes
- "master" trunk and "develop" branch for a single developer
- Driessen's branching model for projects with many contributors

Don't be afraid of branches, modern VCS's allow to "close and hide"
branches (even unfinished ones)

Many open-source projects will only pull from you if your change is in
a feature branch

DOs and DONTs

DONTs:
- do not use archives as a substitute for version control
- never use a centralized VCS (CVS, SVN)
- do not store automatically generated files (PDF, binaries, etc.) and

sensitive data (e.g. passwords, logins, SSH keys, etc.)

DOs:
- use a distributed VCS (Mercurial, Git)
- use the "Integration Manager" workflow

(although the "centralized" workflow works well for papers)
- use Driessen's branching model

Agenda

Today
- version control systems and collaborative development
- Mercurial, Git, Bitbucket, GitHub
- providing support

Tomorrow
- unit testing
- documentation
- dissemination

Mercurial vs Git

Mercurial vs Git

Both written in April 2005 after the big BitKeeper/Torvalds split

Both are:
- distributed version control systems
- fast (Git a tad faster)
- relatively easy to use once (Mercurial more so)
- multi-platform (Mercurial "more native" on Windows)

Selecting one is mostly a matter of taste
- Git is more popular mainly due to GitHub

Mercurial vs Git

Bitbucket
Dovecot
FuseSMB
Growl
MPT
mutt
NetBeans
nginx

Octave
OpenJDK
OpenOffice
OpenSolaris
Python
RabbitMQ
rpm.org
Sphinx

KVM
Linux kernel
Maemo
OLPC
Perl
Samba
VLC
Yum

Android
Debian tools
Drupal
FFmpeg
GCC
GNOME
jQuery
Julia

Mercurial: Basic Commands

Working directory
 file1.m
 file2.m
 file3.m

Mercurial: Basic Commands

Local repositoryWorking directory
 file1.m
 file2.m
 file3.m

Initialize a new local repository: hg init

Mercurial: Basic Commands

Local repositoryWorking directory
? file1.m
? file2.m
? file3.m

Initialize a new local repository: hg init
Check status of files: hg status

untracked

Mercurial: Basic Commands

Local repositoryWorking directory
A file1.m
A file2.m
A file3.m

Initialize a new local repository: hg init
Check status of files: hg status
Start tracking all files: hg add

added

Mercurial: Basic Commands

Local repositoryWorking directory
A file1.m
A file2.m
A file3.m

Initialize a new local repository: hg init
Check status of files: hg status
Start tracking all files: hg add
Commit the added files to the repository: hg commit -m "message"

hg pull

hg commit

Mercurial: Basic Commands

Local repositoryWorking directory
 file1.m
 file2.m
 file3.m

Initialize a new local repository: hg init
Check status of files: hg status
Start tracking all files: hg add
Commit the added files to the repository: hg commit -m "message"

1:08f1cc

global identifierlocal identifier

Mercurial: Basic Commands

Local repositoryWorking directory
M file1.m
 file2.m
M file3.m

Initialize a new local repository: hg init
Check status of files: hg status
Start tracking all files: hg add
Commit the added files to the repository: hg commit -m "message"

1:08f1cc

modified

Mercurial: Basic Commands

Local repositoryWorking directory
M file1.m
 file2.m
M file3.m

Initialize a new local repository: hg init
Check status of files: hg status
Start tracking all files: hg add
Commit the added files to the repository: hg commit -m "message"
View differences to repository: hg diff

1:08f1cc

diff -r 08f1cc6e1abd file1.m
--- a/file1.m
+++ b/file1.m
@@ -36,6 +36,7 @@

 done = false;
 backupTried = false;
+shifted = false;

Mercurial: Basic Commands

Local repositoryWorking directory
M file1.m
 file2.m
M file3.m

Initialize a new local repository: hg init
Check status of files: hg status
Start tracking all files: hg add
Commit the added files to the repository: hg commit -m "message"
View differences to repository: hg diff
Commit the modified files to the repository: hg commit -m "message"

1:08f1cc

hg pull

hg commit

Mercurial: Basic Commands

Local repositoryWorking directory
 file1.m
 file2.m
 file3.m

Initialize a new local repository: hg init
Check status of files: hg status
Start tracking all files: hg add
Commit the added files to the repository: hg commit -m "message"
View differences to repository: hg diff
Commit the modified files to the repository: hg commit -m "message"

1:08f1cc

2:3c4ec5

Mercurial: Basic Commands

Local repositoryWorking directory
 file1.m
 file2.m
 file3.m

Initialize a new local repository: hg init
Check status of files: hg status
Start tracking all files: hg add
Commit the added files to the repository: hg commit -m "message"
View differences to repository: hg diff
Commit the modified files to the repository: hg commit -m "message"
View the log: hg log

1:08f1cc

2:3c4ec5

Mercurial: Basic Commands

Local repository

1:08f1cc

2:3c4ec5

Remote repositoryWorking directory
 file1.m
 file2.m
 file3.m

Mercurial: Basic Commands

Local repository

1:08f1cc

2:3c4ec5

Remote repositoryWorking directory
 file1.m
 file2.m
 file3.m

hg push

Mercurial: Basic Commands

Local repository

1:08f1cc

2:3c4ec5

Remote repositoryWorking directory
 file1.m
 file2.m
 file3.m

1:08f1cc

2:3c4ec5

Mercurial: Basic Commands

Local repository

1:08f1cc

2:3c4ec5

Remote repositoryWorking directory
 file1.m
M file2.m
 file3.m
A file4.m

hg commit

1:08f1cc

2:3c4ec5

Mercurial: Basic Commands

Local repository

1:08f1cc

2:3c4ec5

Remote repositoryWorking directory
 file1.m
 file2.m
 file3.m
 file4.m

hg commit

1:08f1cc

2:3c4ec5

3:d1d784

Mercurial: Basic Commands

Local repository

1:08f1cc

2:3c4ec5

Remote repositoryWorking directory

1:08f1cc

2:3c4ec5

3:d1d784 3:bcdf0c

somebody else
pushed this one

 file1.m
 file2.m
 file3.m
 file4.m

Mercurial: Basic Commands

Local repository

1:08f1cc

2:3c4ec5

Remote repositoryWorking directory

1:08f1cc

2:3c4ec5

3:d1d784 3:bcdf0c

fails!

hg push

 file1.m
 file2.m
 file3.m
 file4.m

Mercurial: Basic Commands

Local repository

1:08f1cc

2:3c4ec5

Remote repositoryWorking directory

1:08f1cc

2:3c4ec5

3:d1d784 3:bcdf0c

hg pull

 file1.m
 file2.m
 file3.m
 file4.m

Mercurial: Basic Commands

Local repository

1:08f1cc

2:3c4ec5

Remote repositoryWorking directory

1:08f1cc

2:3c4ec5

3:d1d784
3:bcdf0c

4:bcdf0c

theirour

 file1.m
 file2.m
 file3.m
 file4.m

Mercurial: Basic Commands

Local repository

1:08f1cc

2:3c4ec5

Remote repositoryWorking directory

1:08f1cc

2:3c4ec5

3:d1d784
3:bcdf0c

4:bcdf0c

 file1.m
M file2.m
 file3.m
 file4.m

hg pullhg merge

Mercurial: Basic Commands

Local repository

1:08f1cc

2:3c4ec5

Remote repositoryWorking directory

1:08f1cc

2:3c4ec5

3:d1d784
3:bcdf0c

4:bcdf0c

 file1.m
M file2.m
 file3.m
 file4.m

hg pullhg commit

Mercurial: Basic Commands

Local repository

1:08f1cc

2:3c4ec5

Remote repositoryWorking directory

1:08f1cc

2:3c4ec5

3:d1d784
3:bcdf0c

4:bcdf0c

5:b49234

 file1.m
 file2.m
 file3.m
 file4.m

Mercurial: Basic Commands

Local repository

1:08f1cc

2:3c4ec5

Remote repositoryWorking directory

1:08f1cc

2:3c4ec5

3:d1d784
3:bcdf0c

4:bcdf0c

5:b49234
hg push 4:d1d784

5:b49234

 file1.m
 file2.m
 file3.m
 file4.m

Mercurial: Basic Commands

Local repository

1:08f1cc

2:3c4ec5

Remote repositoryWorking directory

1:08f1cc

2:3c4ec5

3:d1d784
3:bcdf0c

4:bcdf0c

5:b49234
4:d1d784

5:b49234

 file1.m
 file2.m
 file3.m
 file4.m

6:cbfc5e

somebody else
pushed this one

Mercurial: Basic Commands

Local repository

1:08f1cc

2:3c4ec5

Remote repositoryWorking directory

1:08f1cc

2:3c4ec5

3:d1d784
3:bcdf0c

4:bcdf0c

5:b49234
4:d1d784

5:b49234

 file1.m
 file2.m
 file3.m
 file4.m

6:cbfc5e

hg pull

Mercurial: Basic Commands

Local repository

1:08f1cc

2:3c4ec5

Remote repositoryWorking directory

1:08f1cc

2:3c4ec5

3:d1d784
3:bcdf0c

4:bcdf0c

5:b49234
4:d1d784

5:b49234

 file1.m
 file2.m
 file3.m
 file4.m

6:cbfc5e
6:cbfc5e

hg pullhg update

Sometime Merging is Fully Automatic…

Greetings!

I am Mariam Abacha.

I am the the wife of former
Nigerian dictator Sani Abacha.

Base version

Sometime Merging is Fully Automatic…

Greetings!

I am Mariam Abacha.

I am the the wife of former
Nigerian dictator Sani Abacha.

Base version

Greetings!

I am Shehu Musa Abacha.

I am the the wife of former
Nigerian dictator Sani Abacha.

Greetings!

I am Mariam Abacha.

I am the the son of the former
Nigerian dictator Sani Abacha.

Their changesOur changes

Sometime Merging is Fully Automatic…

Greetings!

I am Mariam Abacha.

I am the the wife of former
Nigerian dictator Sani Abacha.

Base version

Greetings!

I am Shehu Musa Abacha.

I am the the wife of former
Nigerian dictator Sani Abacha.

Greetings!

I am Shehu Musa Abacha.

I am the the son of the former
Nigerian dictator Sani Abacha.

Greetings!

I am Mariam Abacha.

I am the the son of the former
Nigerian dictator Sani Abacha.

Their changesOur changes

Merged version

…and Sometimes Must be Resolved Manually

Greetings!

I am Mariam Abacha.

I am the the wife of former
Nigerian dictator Sani Abacha.

Base version

Greetings!

I am Shehu Musa Abacha.

I am the the cousin of a former
Nigerian dictator Sani Abacha.

Greetings!

I am Alhaji Abba Abacha.

I am the the son of the former
Nigerian dictator Sani Abacha.

Their changesOur changes

…and Sometimes Must be Resolved Manually

Greetings!

I am Mariam Abacha.

I am the the wife of former
Nigerian dictator Sani Abacha.

Base version

Greetings!

I am Shehu Musa Abacha.

I am the the cousin of a former
Nigerian dictator Sani Abacha.

Greetings!

I am ?? Abacha.

I am the the ?? of ?? former
Nigerian dictator Sani Abacha.

Greetings!

I am Alhaji Abba Abacha.

I am the the son of the former
Nigerian dictator Sani Abacha.

Their changesOur changes

Merged version

…and Sometimes Must be Resolved Manually

…and Sometimes Must be Resolved Manually

…and Sometimes Must be Resolved Manually

Greetings!

I am Mariam Abacha.

I am the the wife of former
Nigerian dictator Sani Abacha.

Base version

Greetings!

I am Shehu Musa Abacha.

I am the the cousin of a former
Nigerian dictator Sani Abacha.

Greetings!

I am Shehu Musa Abacha.

I am the the son of the former
Nigerian dictator Sani Abacha.

Greetings!

I am Alhaji Abba Abacha.

I am the the son of the former
Nigerian dictator Sani Abacha.

Their changesOur changes

Merged version

Sidenote: Committing in Git

In Mercurial, hg commit automatically commits all modified files
In Git, things a bit more complicated…

Local repositoryWorking directory
M file1.m
 file2.m
M file3.m 1:08f1cc

hg pull

hg commit

Sidenote: Committing in Git

git commit

 git add

 git checkout

Sidenote: Committing in Git

GUIs

Learn the command-line syntax first to understand concepts

Then use GUIs:
- my choice: SourceTree (hg, git, win, mac, free)
- other options: GitHub Desktop, GitEye, SmartGit, …

SourceTree

Demo

Public Repository Hosting

Cloud-based:
- Bitbucket (Mercurial+Git)
- GitHub (only Git)
- GitLab (only Git)

Blessed
repository

Alice
public

Bob
public

Eve
public

Integration
manager

Alice
private

Bob
private

Eve
private

Self-hosted:
- Rhodecode (Mercurial+Git)
- Bitbucket Server (only Git)
- GitLab (only Git)

Bitbucket vs GitHub

Both:
- are free for academia (Bitbucket even free for small teams)
- offer code hosting, code review, issue tracking, wikis
- support pull requests

My choice: Bitbucket

But GitHub is more popular and visually more appealing

Bitbucket

Demo

Pull Requests

Repository

Working directory

Main idea: everybody has a local copy of the repository
- every developer can commit/update at any time to his/her repository
- no permanent connection required

Question: communication? ("Hey, I made a change, you need
to update")

Answer: pull requests

Repository

Working directory

Alice Bob

Pull Requests in Bitbucket

Demo

Mercurial vs Git: Summary

DOs:
- learn the command line syntax to understand the concepts
- install a merging tool (e.g. kdiff3)
- pick a GUI that supports both systems
- write meaningful commit messages
- use pull requests

DONTs:
- do not lead religious wars about your choices, write code

Agenda

Today
- version control systems and collaborative development
- Mercurial, Git, Bitbucket, GitHub
- providing support

Tomorrow
- unit testing
- documentation
- dissemination

Providing Support

Request tracking:
- email + a request tracking system

Bug tracking:
- Bitbucket/GitHub

Discussion groups/fora:
- Google Groups

Request tracking

Create a generic email (e.g. mpt@) instead of using username@
- allows to dispatch the email to a support group
- lets you to change your affiliation later

Keep track of which emails have been answered:
- sounds easy, but difficult if we have multiple persons providing support
- use Trello as a simple request tracking system
- or set up a more complex system (Request Tracker, Roundup, …)

Trello

Bug Tracking

10 years ago:
- many options: Bugzilla, Redmine, Trac, Roundup
- tried them all, liked Roundup the most

Today:
- use issue tracking modules in Bitbucket and GitHub

Persuade your users to submit bug reports

How to Write Good Bug Reports

Check if you are using the latest version and whether the bug is known

File each issue separately
- bad: "fun1 errors, fun2 misbehaves, and, btw, there is a typo in fun3"

Give the report a descriptive name
- bad: "IT DOES NOT WORK!"
- good: "fun1 breaks when called with a string"

State what is the expected result and what is the actual behavior

Give steps to reproduce the issue
- give information about your setup (OS/Matlab version, etc.)
- provide a minimal code!

Discussion Groups

Fact: same questions are asked over and over again

Idea: let users provide support to each other

Side note: redirect the support mail to the group

Google Groups

Demo

Agenda

Today
- version control systems and collaborative development
- Mercurial, Git, Bitbucket, GitHub
- providing support

Tomorrow
- unit testing
- documentation
- dissemination

