TEMPO Workshop on
Software Development

Michal Kvasnica

SSSSSSSSSSSSSSSSSS
AAAAAAAAAAAAAAAAAAAAAA

"An expert is a person who has made all the mistakes
that can be made in a very narrow field.”

Niels Bohr, Nobel price winner (1922)

The Multi-Parametric Tooloox (MPT)

Developed since 2002
40,000+ Iinstallations world-wide
118,503 lines of code Iin 2,169 files

5 main developers

140000

105000
70000
35000 I
- |

2002 2004 2006 2008 2010 2012 2014 2016

Lines of code

Agenda

Today

- version control systems and collaborative development
- Mercurial, Git, Bitbucket, GitHub
- providing support

Tomorrow

- unit testing
- documentation

- dissemination

Set of DOs and DONTs

Agenda

Today

- version control systems and collaborative development
Mercurial, Git, Bitbucket, GitHub
providing support

DONT #1: Do NOT Use Archives

mptlZ.zip
mptl 2 2.z1p
mpt ver04.zip
mpt verllRl.zip
mpt verldl.zip
mptl3rl.zip

mpt ver02.z1ip
mpt ver(05.z1p
mpt verllRZ2.zi1p
mpt verld4d.zip
mptld.zip

mpt ver(03.z1ip
mpt verll.zip
mpt verllR3.z1p
mptvl122.z1p

Main problems:

does not protect against accidental deletion

linear development (cannot release until all
new features are complete)

single-user development

difficult to find a change that introduced a bug

Archives do not give answers to:

- what has changed between versions?

- who made the changes”

- when and why were the changes made”?
- which version is the latest stable release”

DO #1: Use a Version Control System

Main objectives:

- record changes over time
- recall a specific version later
- enable collaboration

- allow nonlinear development

DO #1: Use a Version Control System

Main objectives:

- record changes over time
- recall a specific version later
- enable collaboration

- allow nonlinear development

Working directory

filel
file?

Repository

DO #1: Use a Version Control System

Main objectives:

enable collaboration

record changes over time

recall a specific version later

allow nonlinear development

Working directory

filel
file?

=

Repository

[

Version 1
filel, file?

J

DO #1: Use a Version Control System

Main objectives:

record changes over time

recall a specific version later

enable collaboration

allow nonlinear development

Working directory Repository

changel
file?2

Version 2
changel, fi1le?

v

Version 1
filel,file?

DO #1: Use a Version Control System

Main objectives:

- record changes over time
- recall a specific version later
- enable collaboration

- allow nonlinear development

Working directory

changel
file?
file3

Repository

[

Version 3
changel, file2, file3

J

l

[

Version 2
changel, fi1le?

J

v

[

Version 1
filel, file?

J

Sidenote: VCS is for Source Code

Typically stored in VCS:

- source files
- documentation (markdown, html, LaTeX)
- binary files that do not change (e.g. logos)

Not to be stored:

- automatically generated files (PDFs from LaTeX, compiled binaries, etc.)
- Word documents

- files containing passwords! (even when you remove the data from the
top version, it stays in the repository forever in previous versions)

Sidenote: Different Storage Models

(Mercurial)
File A —» Al L A2
File B - Al — A2
File C —» Al — A2 - A3
Snapshots:
(Git)
File A Al A2
| SR - |
File B g B B1
- [1 [|
File C C1 C2 C3

https://qit-scm.com/book/en/v2/Getting-Started-Git-Basics

https://git-scm.com/book/en/v2/Getting-Started-Git-Basics

DO #1: Use a Version Control System

Main objectives:

record changes over time

enable collaboration

recall a specific version later

allow nonlinear development

Working directory

changel
£file2

file3 , ,
file accidentally
deleted

Repository

[

Version 3
changel, fi1le2,fi1ile3

J

l

[

Version 2
changel, file?

J

v

[

Version 1
filel, file?

J

DO #1: Use a Version Control System

Main objectives:

record changes over time

enable collaboration

allow nonlinear development

Working directory

file restored

changsg
file2
file3

recall a specific version later

Repository

[

Version 3
changel, file2, file3

J

l

[

Version 2
changel, file?

J

v

[

Version 1
filel, file?

J

DO #1: Use a Version Control System

Main objectives:

- record changes over time

- recall a specific version later

- enable collaboration

- allow nonlinear development

Working directory

changel
file?

Repository

[

Version 3
changel, fi1le2,fi1ile3

J

l

update ‘ [

Version 2
changel, fi1le?2

J

v

[

Version 1
filel, file?

J

DO #1: Use a Version Control System

Main objectives:

- record changes over time

- recall a specific version later

- enable collaboration

- allow nonlinear development

Working directory

filel
file?

Repository

[

Version 3
changel, fi1le2,fi1ile3

J

l

[

Version 2
changel, file?

J

\ 4

:

Version 1
filel, file?

J

DO #1: Use a Version Control System

Main objectives:

record changes over time

recall a specific version later

enable collaboration

allow nonlinear development

Alice

(

Repository

)

I

A 4

(Working directory

)

Bob

DO #1: Use a Version Control System

Main objectives:

record changes over time

recall a specific version later

enable collaboration

allow nonlinear development

Alice Bob

(Repository)
[R o

(Working directory) Working directory

.
--

Centralized VCS (CVS, SVN, Perforce)

Main idea: use a centralized repository (public server)

Central repository

Alice Bob

(Working directory) Working directory

.
--

Centralized VCS (CVS, SVN, Perforce)

Main idea: use a centralized repository (public server)

Central repository

Alice Bob

(Working directory) Working directory

.
--

Centralized VCS (CVS, SVN, Perforce)

Main idea: use a centralized repository (public server)

Central repository

Alice

(Working directory

)

\

Bob

(Working directory

)

Centralized VCS (CVS, SVN, Perforce)

Main idea: use a centralized repository (public server)

Central repository

Alice

update

(Working directory)

Bob

(Working directory

)

Centralized VCS (CVS, SVN, Perforce)

Main idea: use a centralized repository (public server)

Central repository

Alice

(Working directory

)

update

Bob

(Working directory

)

Centralized VCS (CVS, SVN, Perforce)

Main idea: use a centralized repository (public server)

Problems:

requires permanent internet connection (+single point of failure)

access rights management

communication ("Hey, | made a change, you need to update”)

only one person can commit at a time

Central repository

Alice Bob

(Working directory) (Working directory)

DONT #2: Never use a Centralized VCS

Main idea: use a centralized repository (public server)

Problems:

requires permanent internet connection (+single point of failure)

access rights management

communication ("Hey, | made a change, you need to update”)

only one person can commit at a time

Central repository

Alice Bob

(Working directory) (Working directory)

DONT #2: Never use a Centralized VCS

Main idea: use a centralized repository (public server)

Problems:

requires permanent internet connection (+single point of failure)

access rights management

communication ("Hey, | made a change, you need to update”)

only one person can commit at a time

Central repository

Alice Bob

(Working directory) (Working directory)

Sidenote: Merges

Central repository

Alice

G

-

end

-

function savhello ()
disp('Hello, world!")

~

Bob

Sidenote: Merges

Central repository

Alice

-

function savhello ()
disp('Hello, world!")
end

-

Bob

~

function savhello ()
disp('Hello, world!")
end

_

Sidenote: Merges

Centralized VCS will prevent simultaneous commits

- in fact, "update” locks the repository for a particular user

Central repository

[\

Alice m

-

-

~
function savhello ()
disp('Good morning!')
end

,

zm Bob

-
function savhello ()
disp('Hello, world!")
disp ('Bye')

end

_

Sidenote: Merges

Centralized VCS will prevent simultaneous commits

- in fact, "update” locks the repository for a particular user

Resolution:

- Alice must wait for Bob to commit
- Alice then updates her working directory with Bolb" changes

- Alice must "merge"” Bob's changes with hers

Central repository

\

Alice m Bob

~) ("
function savhello ()
disp('Hello, world!")
disp('Bye')

end

function savhello ()
disp('Good morning!')
end

- _J _

Sidenote;

Merges

Centralized VCS will prevent simultaneous commits

- in fact, "update” locks the repository for a particular user

Resolution:

- Alice must wait for Bob to commit
- Alice then updates her working directory with Bolb" changes

- Alice must "merge"” Bob's changes with hers

Central repository

Alice

-

~

function savhello ()
disp('Good morning!')
disp ('Bye')

end

\

Bob

-
function savhello ()
disp('Hello, world!")
disp('Bye'")

end

_

Sidenote: Merges

Centralized VCS will prevent simultaneous commits

- in fact, "update” locks the repository for a particular user

Resolution:

- Alice must wait for Bob to commit

- Alice then updates her working directory with Bolb" changes
- Alice must "merge"” Bob's changes with hers

Central repository

Alice m

~)
function savhello ()
disp ('Good morning!")
disp ('Bye")

end

_ J

Bob

~

function savhello ()
disp('Hello, world!")
disp('Bye'")

end

_

Sidenote: Merges

Centralized VCS will prevent simultaneous commits

- in fact, "update” locks the repository for a particular user

Resolution:

- Alice must wait for Bob to commit

- Alice then updates her working directory with Bolb" changes
- Alice must "merge"” Bob's changes with hers

Central repository

Alice

-
function savhello ()
disp('Bye')

end
_

disp ('Good morning!")

Bob

~

function savhello ()
disp ('Good morning!')
disp('Bye'")

end

-

Distributed VCS (Mercurial, Git)

Main idea: everybody has a local copy of the repository

Alice Bob
(Repository) (Repository)
I I
\ 4 \ 4
(Working directory) (Working directory)

Distributed VCS (Mercurial, Git)

Main idea: everybody has a local copy of the repository

Alice Bob

lll

(Repository)—P Repository

T A 4

(Working directory)

Distributed VCS (Mercurial, Git)

Main idea: everybody has a local copy of the repository

Alice Bob

(Repository)_Pm Repository

A 4

(Working directory)

Distributed VCS (Mercurial, Git)

Main idea: everybody has a local copy of the repository

Alice Bob

(Repository) (Repository)
[N

(Working directory) Working directory

0
--

Distributed VCS (Mercurial, Git)

Main idea: everybody has a local copy of the repository

Alice Bob
(Repository) (Repository)
y

\ 4 \ 4
(Working directory) (Working directory)

Distributed VCS (Mercurial, Git)

Main idea: everybody has a local copy of the repository

- every developer can commit/update at any time to his/her repository

- NO permanent connection required

Alice Bob
(Repository) (Repository)
I I
\ 4 \ 4
(Working directory) (Working directory)

Distributed VCS (Mercurial, Git)

Main idea: everybody has a local copy of the repository

- every developer can commit/update at any time to his/her repository

- NO permanent connection required

Alice

(

Repository

A 4

(Working directory

)

Bob

)4—@ Repository

)

I

(Working directory

)

Distributed VCS (Mercurial, Git)

Main idea: everybody has a local copy of the repository

- every developer can commit/update at any time to his/her repository

- NO permanent connection required

Alice

(

Repository @4—(

A 4

(Working directory

)

Bob

Repository

)

(Working directory

)

Distributed VCS (Mercurial, Git)

Main idea: everybody has a local copy of the repository

- every developer can commit/update at any time to his/her repository

- NO permanent connection required

Alice

(

Repository

Corni o

(Working directory

)

Bob

)—V@ Repository

)

\ 4

(Working directory

)

Distributed VCS (Mercurial, Git)

Main idea: everybody has a local copy of the repository

- every developer can commit/update at any time to his/her repository

- NO permanent connection required

Rule of thumb: never push to a remote repository, let its owner

pull from yours

Alice

(Repository

)

| |

(Working directory

)

Bob

Repository)

[|

(Working directory)

Distributed VCS (Mercurial, Git)

Main idea: everybody has a local copy of the repository

- every developer can commit/update at any time to his/her repository

- NO permanent connection required

Questions:

- access rights management?

- communication ("Hey, | made a change, you need to update")?

- which repository is the "blessed" one for production code?

Alice

(Repository

| |

(Working directory

)

Bob

)4—?(Repository)

[|

(Working directory)

Distributed VCS (Mercurial, Git)

Main idea: everybody has a local copy of the repository

- every developer can commit/update at any time to his/her repository

- NO permanent connection required

Questions:

- access rights management?

- communication ("Hey, | made a change, you need to update")?

- which repository is the "blessed" one for production code?

Alice

(Repository

| |

(Working directory

)

Bob

)4—?(Repository)

[|

(Working directory)

Distributed VCS Workflows

Three possible workflows:

- centralized
- Integration manager

- dictator / lieutenants

Alice Bob

(Repository) (Repository)
|l |l

(Working directory) (Working directory)

Centralized Workflow

l|dea: use a central "blessed"” repository

- but each developer has his/her own copy (no single point of failure)

Blessed repository

(Repository)
|l

(Working directory)

Bob

(Repository

)

[|

(Working directory

)

Centralized Workflow

l|dea: use a central "blessed"” repository

- but each developer has his/her own copy (no single point of failure)

Problems:

- cannot push conflicting changes

Blessed repository

Alice

-

function savhello ()
disp('Hello, world!")
end

-

Bob

~

function savhello ()
disp('Hello, world!")
end

_

Centralized Workflow

l|dea: use a central "blessed"” repository

- but each developer has his/her own copy (no single point of failure)

Problems:

- cannot push conflicting changes

Blessed repository

Alice Bob
4) (
function savhello () function savhello ()
disp('Good morning!') disp('Hello, world!")
end disp('Bye')
end
_ Y, _

Centralized Workflow

l|dea: use a central "blessed"” repository

- but each developer has his/her own copy (no single point of failure)

Problems:

- cannot push conflicting changes

Blessed repository

Alice

-
function savhello ()
disp('Good morning!')
end

-

Bob

~

function savhello ()
disp('Hello, world!")
disp ('Bye')

end

_

Centralized Workflow

l|dea: use a central "blessed"” repository

- but each developer has his/her own copy (no single point of failure)

Problems:
- cannot push conflicting changes

Blessed repository

Alice

-

function savhello ()
disp('Good morning!")
end

function savhello ()
disp ('Good morning!')
disp ('Bye')

end

- _J _

Centralized Workflow

l|dea: use a central "blessed"” repository

- but each developer has his/her own copy (no single point of failure)

Problems:

- cannot push conflicting changes

Blessed repository

Alice

-

function savhello ()
disp('Good morning!")
end

-

Bob

~

function savhello ()
disp ('Good morning!"')
disp('Bye'")

end

_

Centralized Workflow

l|dea: use a central "blessed"” repository

- but each developer has his/her own copy (no single point of failure)

Problems:
- cannot push conflicting changes

Blessed repository

Bob

~) ("
function savhello ()
disp ('Good morning!"')
disp('Bye'")

end

function savhello ()
disp ('Good morning!"')
disp ('Bye')

end

- _J _

Centralized Workflow

l|dea: use a central "blessed"” repository

- but each developer has his/her own copy (no single point of failure)

Problems:
- cannot push conflicting changes (merging is required, often difficult!)
- only suitable for a small number of developers (<5)

Blessed repository

Alice Bob
4) (
function savhello () function savhello ()
disp('Good morning!") disp ('Good morning!"')
disp('Bye') disp('Bye'")
end end
_ v, _

Integration Manager Workflow

|dea: use a central "blessed" repository:

- but only the integration manager can push to it

Blessed

B

ull+update

Integration
manager

Integration Manager Workflow

|dea: use a central "blessed" repository:

- but only the integration manager can push to it
- the manager cherry-picks changes and handles merges

Blessed

repository
A

Integration

manager

_

selective pulls+merge

Integration Manager Workflow

|dea: use a central "blessed" repository:

- but only the integration manager can push to it
- the manager cherry-picks changes and handles merges

Problem: usually cannot pull from private repositories

Blessed
repository

Integration
manager

Integration Manager Workflow

|dea: use a central "blessed" repository:

- but only the integration manager can push to it
- the manager cherry-picks changes and handles merges

Problem: usually cannot pull from private repositories

Solution: every developer has a public version of his/her repository

Alice Bob Eve
public public public

Blessed
repository

Integration

manager

Integration Manager Workflow

|dea: use a central "blessed" repository:

- but only the integration manager can push to it
- the manager cherry-picks changes and handles merges

Problem: usually cannot pull from private repositories

Solution: every developer has a public version of his/her repository

Blessed Alice Bob Eve
repository public public public

pull+merge
pull+merge

pull+merge

Integration
manager

Integration Manager Workflow

|dea: use a central "blessed" repository:

- but only the integration manager can push to it
- the manager cherry-picks changes and handles merges

Problem: usually cannot pull from private repositories

Solution: every developer has a public version of his/her repository

Blessed Alice Bob Eve
repository public public public

Integration
manager

Integration Manager Workflow

|dea: use a central "blessed" repository:

- but only the integration manager can push to it
- the manager cherry-picks changes and handles merges

Problem: usually cannot pull from private repositories

Solution: every developer has a public version of his/her repository

Blessed Alice Bob Eve
repository public public public
Integration

manager

Integration Manager Workflow

|dea: use a central "blessed" repository:

- but only the integration manager can push to it
- the manager cherry-picks changes and handles merges

Problem: usually cannot pull from private repositories

Solution: every developer has a public version of his/her repository
Blessed Alice Bob
repository public public

A

< >

A
Integration
manager

Dictator / Lieutenants Workflow

ldea: use multiple integration managers (aka lieutenants)

- each lieutenant is usually responsible for one module
- used for big projects (e.g. the Linux kernel, Python)

repository

Alice Bob Eve John
public public public public

Dictator / Lieutenants Workflow

ldea: use multiple integration managers (aka lieutenants)

- each lieutenant is usually responsible for one module
- used for big projects (e.g. the Linux kernel, Python)

repository

Lieutenant Lieutenant

Dictator / Lieutenants Workflow

ldea: use multiple integration managers (aka lieutenants)

- each lieutenant is usually responsible for one module
- used for big projects (e.g. the Linux kernel, Python)

repository

Lieutenant Lieutenant

Dictator / Lieutenants Workflow

ldea: use multiple integration managers (aka lieutenants)

- each lieutenant is usually responsible for one module
- used for big projects (e.g. the Linux kernel, Python)

repository

Lieutenant Lieutenant

Dictator / Lieutenants Workflow

ldea: use multiple integration managers (aka lieutenants)

- each lieutenant is usually responsible for one module
- used for big projects (e.g. the Linux kernel, Python)

Blessed

repository

Lieutenant

A 4
Alice Bob Eve John
public public public public

DO #2: Use the Integration Manager Workflow

Main objectives:

record changes over time

recall a specific version later

enable collaboration

allow nonlinear development

Blessed Bob
repository public

A ‘\ A
Integration \
manager

\

DO #3: Choose a Proper Development Model

Main objectives:

- record changes over time

- recall a specific version later

- enable collaboration

- allow nonlinear development

DO #3: Choose a Proper Development Model

Development models:

- linear

- hotfix branches

- "master” trunk and "develop" branch
- Driessen's branching model

DO #3: Choose a Proper Development Model

Development models:

- linear

- hotfix branches

- "master” trunk and "develop” branch
- Driessen's branching model

Stable
release

DO #3: Choose a Proper Development Model

Development models:

linear

hotfix branches

"master” trunk and "develop” branch

Driessen's branching model

Problem: release with unfinished features is not desired

Nasty bug
fixed, needs
immediate
release

New cool
feature
(unfinished)

DO #3: Choose a Proper Development Model

Development models:
- Hnear
- hotfix branches

- "master” trunk and "develop" branch
- Driessen's branching model

Problem: release with unfinished features is not desired

Solution: branch from latest stable release, only merge with finished
features

0008000

DO #3: Choose a Proper Development Model

Development models:
- Hnear
hotfix branches

"master” trunk and "develop” branch

Driessen's branching model
Problem: release with unfinished features is not desired

Solution: branch from latest stable release, only merge with finished
features

New cool
feature
completed

DO #3: Choose a Proper Development Model

Development models:
- Hnear
- hotfix branches

- "master” trunk and "develop" branch
- Driessen's branching model

Problem: release with unfinished features is not desired

Solution: branch from latest stable release, only merge with finished
features (but then the production code is the second-class citizen)

DO #3: Choose a Proper Development Model

Development models:
- Hnear
- hotfix branches

- "master" trunk and "develop" branch
- Driessen's branching model

ldea: the trunk always contains production-ready code

Hotfix release

master trunk

Stable
release

develop branch

DO #3: Choose a Proper Development Model

Development models:
- Hnear
hotfix branches

"master" trunk and "develop" branch

Driessen's branching model

ldea: the trunk always contains production-ready code

Problem: what if we work on multiple new features in parallel?

Hotfix release

master trunk

Stable
release

develop branch

DO #3: Choose a Proper Development Model

Development models:
- Hnear
- hotfix branches

- "master” trunk and "develop" branch
- Driessen's branching model

feature
branches
——
!
v
S

Major
feature for

Feature
next release

for future
release

From this point on,
“next release”
means the release
after 1.0

develop

rel. branch
may be
continuously
merged back
I into develop

release

branches

hotfixes master

release
branch for

)

Tag
0.2

http://nvie.com/posts/

a-successful-qit-
branching-model/

http://nvie.com/posts/a-successful-git-branching-model/

DO #3: Use a Proper Development model

Development models:
- linear
hotfix branches for projects with infrequent changes

"master” trunk and "develop” branch for a single developer
Driessen's branching model for projects with many contributors

Don't be afraid of branches, modern VCS's allow to "close and hide"
branches (even unfinished ones)

Many open-source projects will only pull from you if your change is in
a feature branch

DOs and DONTs

DONTSs:

- do not use archives as a substitute for version control
- never use a centralized VCS (CVS, SVN)

- do not store automatically generated files (PDF, binaries, etc.) and
sensitive data (e.g. passwords, logins, SSH keys, etc.)

DOs:

- use a distributed VCS (Mercurial, Git)

- use the "Integration Manager" workflow
(although the "centralized" workflow works well for papers)

- use Driessen's branching model

Agenda

Today

- version control systems and collaborative development
- Mercurial, Git, Bitbucket, GitHub
- providing support

Tomorrow

- unit testing
- documentation

- dissemination

Mercurial vs Git

Mercurial vs Git

Both written in April 2005 after the big BitKeeper/Torvalds spilit

Both are:

distributed version control systems
fast (Git a tad faster)
relatively easy to use once (Mercurial more so)

multi-platform (Mercurial "more native" on Windows)

Selecting one is mostly a matter of taste

- Git is more popular mainly due to GitHub

Mercurial vs Git

+S3) mercurial

Bitbucket
Dovecot
—useSMB
Growl
MPT
Mutt

NetBeans
Nnginx

Octave
OpendDK
OpenOffice
OpenSolaris
Python
RabbitMQ
rpm.org
Sphinx

Android
Debian tools
Drupal

—-Fmpeg
GCC
GNOME
jQuery
Julia

git

KVM

Linux kernel
Maemo
OLPC

Perl

Samba
VLC

Yum

Mercurial: Basic Commands

Working directory

filel.m
file?2.m
file3.m

Mercurial: Basic Commands

Working directory Local repository

filel.m
file?2.m
file3.m

Initialize a new local repository: hg init

Mercurial: Basic Commands

\Working directory Local repository
? filel.m

? fileZ2.m
? file3.m

Initialize a new local repository: hg init
Check status of files: hg status

Mercurial:

Basic Commands

rking directory Local repository

A filel.m
A file’?2.m
A file3.m

Initialize a new local repository: hg init

Check status of files: hg status

Start tracking all files: hg add

Mercurial: Basic Commands

Working directory Local repository

A filel.m
A file’?2.m
A file3.m

Initialize a new local repository: hg init
Check status of files: hg status

Start tracking all files: hg add
Commit the added files to the repository: hg commit -m "message"

Mercurial: Basic Commands

Working directory Local repository
filel . -
$BEY [ocal identifier global identifier
file3.m

Initialize a new local repository: hg init
Check status of files: hg status

Start tracking all files: hg add
Commit the added files to the repository: hg commit -m "message"

Mercurial: Basic Commands

rking directory Local repository

M filel.m
file?2.m

M filed.m [1.08flcc |

Initialize a new local repository: hg init
Check status of files: hg status

Start tracking all files: hg add
Commit the added files to the repository: hg commit -m "message"

Mercurial: Basic Commands

diff -r 08flccoelabd filel.m

——— a/filel.m
+++ b/filel.m
@@ -36,6 +36,7 @QQ@

Working directory Local repositon s RIS EIEEY
backupTried = false;
M filel.m +shifted = false;
file2.m
M file3.m

[1:08f1cc

Initialize a new local repository: hg init

Check status of files: hg status

Start tracking all files: hg add

Commit the added files to the repository: hg commit -m "message"

View differences to repository: hg diff

Mercurial: Basic Commands

Working directory Local repository

M filel.m
file?2.m
M file3.m

[1.08ficc |

Initialize a new local repository: hg init

Check status of files: hg status

Start tracking all files: hg add

Commit the added files to the repository: hg commit -m "message"
View differences to repository: hg diff

Commit the modified files to the repository: hg commit -m "message"

Mercurial: Basic Commands

Working directory Local repository
filel.m [2:3c4ec5 |
file2.m I
filed.m [1:08f1cc |

Initialize a new local repository: hg init

Check status of files: hg status

Start tracking all files: hg add

Commit the added files to the repository: hg commit -m "message"
View differences to repository: hg diff

Commit the modified files to the repository: hg commit -m "message"

Mercurial: Basic Commands

Working directory Local repository
filel.m [2:3c4ec5 |
file2.m I
filed.m [1:08f1cc |

Initialize a new local repository: hg init

Check status of files: hg status

Start tracking all files: hg add

Commit the added files to the repository: hg commit -m "message"
View differences to repository: hg diff

Commit the modified files to the repository: hg commit -m "message"

View the log: hg log

Mercurial: Basic Commands

Working directory

filel.m
file?2.m
file3.m

Local repository

(2:3c4ech)

'

[1:08ficc |

Remote repository

Mercurial: Basic Commands

Working directory

filel.m
file?2.m
file3.m

Local repository

Remote repository

>

(2:3c4ech)

'

[1:08ficc |

Mercurial: Basic Commands

Working directory

filel.m
file?2.m
file3.m

Local repository

(2:3c4ech)

'

[1:08ficc |

Remote repository

{ 2:3c4ech)

'

[1:08flcc |

Mercurial: Basic Commands

Working directory

filel.
M file?.
file3.
A filed.

m
m
m
m

Local repository

=D

(2:3c4ech)

'

[1:08ficc |

Remote repository

{ 2:3c4ech J

'

[1:08flcc |

Mercurial: Basic Commands

Working directory

filel.
fileZ2.
file3.
filed.

m
m
m
m

=D

Local repository

[3:d1d784 |

v

(2:3c4ech)

'

[1:08ficc |

Remote repository

{ 2:3c4ech J

'

[1:08flcc |

Mercurial: Basic Commands

Working directory

filel.
file?.
file3.

m
m
m

filed.m

Local repository

[3:d1d784 |

v

(2:3c4ech)

'

[1:08ficc |

Remote repository

somebody else

pushed this one

[3:bcdfOc

v
{ 2:3c4ech J

'

[1:08flcc |

Mercurial: Basic Commands

Working directory

filel.
file?.
file3.

m
m
m

filed.m

Local repository

Remote repository

fails!
hg push

[3:d1d784 | [3ibcdfoc |

(2:80l46c:5) { 2:3c£1ec5 |

(1:08lf1<:c) { 1:08lf1cc |

Mercurial: Basic Commands

Working directory

filel.
file?.
file3.

m
m
m

filed.m

Local repository

[3:d1d784

v

J
(2:3c4ecd)
]

'

[1:08f1cc

<

Remote repository

[3ibcdfoc |

v
{ 2:3c4ech J

'

[1:08flcc |

Mercurial:

Basic Commands

Working directory

filel.
file?.
file3.

m
m
m

filed.m

TR

Local repository

[3:d1d784 |

4 bcdfOc i

\/

(2:3c4ech

'

1:08f1cc)

Remote repository

[3ibcdfoc |

v
{ 2:3c4ech J

'

[1:08flcc |

Mercurial: Basic Commands

Working directory

filel.
M file?.
file3.

m
m
m

filed.m

hg merge
3:d1d784 || 4:bcdfoc |

Local repository

\/

2:3c4ech

'

(1:08f1cc)

Remote repository

[3ibcdfoc |

v
{ 2:3c4ech J

'

[1:08flcc |

Mercurial: Basic Commands

Working directory

filel.
M file?.
file3.

m
m
m

filed.m

mon d784 |(4:bedfoc |

Local repository

\/

2:3c4ech

'

(1:08f1cc)

Remote repository

[3ibcdfoc |

v
{ 2:3c4ech J

'

[1:08flcc |

Mercurial: Basic Commands

Working directory

filel.
file?.
file3.

m
m
m

filed.m

Local repository

[5:b49234 |

/\

[3:d1d784 |[4:bedfoc |

\/

2:3c4ech

'

(1:08f1cc)

Remote repository

[3ibcdfoc |

v
{ 2:3c4ech J

'

[1:08flcc |

Mercurial: Basic Commands

Working directory

filel.
file?.
file3.

m
m
m

filed.m

Local repository

[5:b49234 |

/\

[3:d1d784 || 4:bedfoc

\/

2:3c4ech

'

(1:08f1cc)

Remote repository

| 5:049234

v
| 4:d1d784

7~

. 3ibcdfoc

v
{ 2:3c4ech

'

[1:08flcc |

Mercurial:

Basic Commands

Working directory

filel.
fileZ2.
file3.
filed.

3 3 3 3

Local repository

[5:b49234 |

/\

[3:d1d784 |[4:bedfoc |

\/

2:3c4ech

'

(1:08f1cc)

Remote repOoRSelatlzlslele A==

pushed this one

o:cbfcbe

v

| 5:049234

v

| 4d1d784

7~

\.

~

3:bcdfOc

J

v

(

2:3c4ech

'

[1:08flcc |

Mercurial: Basic Commands

Working directory

filel.
file?.
file3.

m
m
m

filed.m

Local repository

[5:b49234 |

/\

[3:d1d784 || 4:bedfoc

\/

2:3c4ech

'

(1:08f1cc)

Remote repository

o:cbfchbe

!
| 5:b49234

v
| 4:d1d784

7~

. 3ibcdfoc

v
{ 2:3c4ech

'

[1:08flcc |

Mercurial: Basic Commands

Working directory

filel.
file?.
file3.

m
m
m

filed.m

hg update
3:

Local repository

(6:cbfcoe)

'

[5:b49234 |

/\

d1d784 |[4:bedfoc |

\/

2:3c4ech

'

(1:08f1cc)

Remote repository

o:cbfchbe

!
5:p49234

v
| 4:d1d784

. 3ibcdfoc

v
{ 2:3c4ech

'

[1:08flcc |

Sometime Merging is Fully Automatic...

Greetings! |

Base version
| am Mariam Abacha. P———

| am the the wife of former
Nigerian dictator Sani Abacha.

Sometime Merging is Fully Automatic...

Greetings!

Our changes

[—

Greetings!

Their changes

[—

| am Shehu Musa Abacha.

| am the the wife of former
Nigerian dictator Sani Abacha.

AN

| am Mariam Abacha.

| am the the son of the former
Nigerian dictator Sani Abacha.

L

Greetings!

Base version

| am Mariam Abacha.

| am the the wife of former

A —] —

Nigerian dictator Sani Abacha.

Sometime Merging is Fully Automatic...

Greetings! .
J Merged version

| am Shehu Musa Abacha. -

| am the the son of the former
Nigerian dictator Sani Abacha.

N ™

ings! ings!
Greetings! Our changes Greetings! Their changes
| am Shehu Musa Abacha. : | am Mariam Abacha. .
| am the the wife of former | am the the son of the former
Nigerian dictator Sani Abacha. Nigerian dictator Sani Abacha.
Greetings! |
Base version
| am Mariam Abacha. ——

| am the the wife of former
Nigerian dictator Sani Abacha.

...and Sometimes Must be Resolved Manually

inqs! inas!
Greetings! Our changes Greetings! Their changes
| am Shehu Musa Abacha. " | am Alhaji Abba Abacha” -
| am the the cousin of a former | am the the son of the former
Nigerian dictator Sani Abacha. Nigerian dictator Sani Abacha.
Greetings! |
Base version
| am Mariam Abacha. P——

| am the the wife of former
Nigerian dictator Sani Abacha.

...and Sometimes Must be Resolved Manually

Greetings! .
J Merged version

| am ?? Abacha. -

| am the the ?? of ?? former
Nigerian dictator Sani Abacha.

N ™

inas! inas!
Greetings! Our changes Greetings! Their changes
| am Shehu Musa Abacha. : | am Alhaji Abba Abacha’ o
| am the the cousin of a former | am the the son of the former
Nigerian dictator Sani Abacha. Nigerian dictator Sani Abacha.
Greetings! |
Base version
| am Mariam Abacha. ——

| am the the wife of former
Nigerian dictator Sani Abacha.

...and Sometimes Must be

Resolved Manually

eove KDiff3 B |
bot - - - - ~ 3 2 - A El C : o ‘ , :
A (Base): base mTop linel B: local mTop linel C: other mTop line 1
Greetings! Greetings! Greetings!

I am the the wife_of former Ni{ll

| I am Mariam Abacha.

| I am Shehu_Musa Abacha.

I am the the cousin_of_a formefll I am the the son_of_the former

| T am Alhaji_Abba Abacha.

|- /Users/michal /Downloads /nigeria/base/email.txt

Codec from C: System

Greetings!
? || <Merge Conflict>

? | <Merge Conflict>

Number of remaining unsolved conflicts: 2 (of which 0 are whitespace)

...and Sometimes Must be Resolved Manually

eo0e KDiff3
. M a4 v a4 v 2 T 2 ¥ a B |C | : |- ar
A (Base): base MTop line 1 B: |ocal mTop line 1 C: other mTop line 1
Greetings! Greetings! Greetings!
I am Mariam Abacha. | I am Shehu_Musa Abacha. B I am Alhaji_Abba Abacha. l
| I am the the wife_of former N:I.g’. | I am the the cousin_of_a formea-- | I am the the son_of_the former

/Users/michal/Downloads/nigeria/base/email.txt
Greetings!

B| I am Shehu Musa Abacha.

C ||l am the the son of the former Nigerian dictator Sani Abacha.

Number of remaining unsolved conflicts: 0 (of which 0 are whitespace)

...and Sometimes Must be Resolved Manually

Greetings! .
J Merged version

| am Shehu Musa Abacha. -

| am the the son of the former
Nigerian dictator Sani Abacha.

N ™

inas! inas!
Greetings! Our changes Greetings! Their changes
| am Shehu Musa Abacha. : | am Alhaji Abba Abacha’ o
| am the the cousin of a former | am the the son of the former
Nigerian dictator Sani Abacha. Nigerian dictator Sani Abacha.
Greetings! |
Base version
| am Mariam Abacha. ——

| am the the wife of former
Nigerian dictator Sani Abacha.

Sidenote: Committing in Git

Working directory Local repository

M filel.m
file?2.m
M file3.m

[1.08ficc |

In Mercurial, hg commit automatically commits all modified files
In Git, things a bit more complicated...

Sidenote: Committing in Git

.git directory
(Repository)

Working
Directory

glt checkout

Sidenote: Committing in Git

Untracked Unmodified

Add the file

Remove the file

Edit the file

Modified

IIIIIHHHHHHIIIII

Stage the file

GUIs

Learn the command-line syntax first to understand concepts

Then use GUIs:

- my choice: Sourcelree (hg, git, win, mac, free)
- other options: GitHub Desktop, GitkEye, SmartGit, ...

[N 0 Users/michal/Dropbox/matiab/mpt3/hg/mpt3-flow (Mercurial)
e ’
vE: @ ¢ D @glda Q& IV AS i ¥ & o
View Commit Update Revert Shelve Add Remove AddWRemove Pull Push Branch Merge Tag Show in Finder Hg Flow Terminal Settings
FILE STATUS | ANl Branches v Jump to:
Graph Deoscription Revision Author Dato
BRANCHES o Uncommitted changes -1 . 19 Nov 2016 13:40
D detaur . WVie Lhotied 16 PV correctly deal with intermediate ompty sets 828 Michal Kvasaica... 17 Nov 2016 08:38
b deverop ! flow: Croated branch "hottou3.1.6'. 827 Michal Kvasaica... 17 Nov 2016 02:59
v B hotsx I foatwrolonumpqp Mpt_enum_pap: improve performance by pre-allccation of armays 82e Michal Kvasnica... 16 Nov 2016 09:42
v 316 I met_enum_pap: add o progress meter 82s Michal Kvasnica... 15 Nov 2016 15:50
v . foature l met_enum_pap: diaplay info about redundant conatraints 824 Michal Kvasnica... 15 Nov 2016 15:27
v l test_onum_pap 02: 1ost rogion-less solution 823 Michal Kvasnica... 15 Nov 2016 15:24
' met_onum_pqp: more eficiont Rorative onumeration of active sots 822 Michal Kvasnica... 15 Nov 2016 15:21
BOOKMARKS I * P dovolop infine help for LTISystom/reachabloSet() and PWASystem/reachableSet() 821 Michal Kvasnica,.. 15 Nov 2016 12:17
TAGS Sorted by path ~ | | [Q & -
CHANGELOG
REMOTES © © CHANGELOG
P dofauie) source/mpt/modules/ul/@PWASystem/ PWASystem.m
Fie contents Reverse hunk
SHELVED O source/mptitests/ul/pwasystemest_pwasystem_reachset_07_pass.m > T 3.1.6
& yaimip2mpt f PWASystem/reachableSet: correctly deal with 2 | ¢ Summ———
intermediate empty sets J |+
SUBREPOSITORIES £ 4« Fixed bugs
Revision: 828 5+ = PASystes/reachableSet() mow correctly deals with istersediate espty sets
[(3) 8 Drcownre © Cean © 1Mot Trackes Atlassian

Sourcelree

‘Demo

Public Repository Hosting

Cloud-based: Self-hosted:
- Bitbucket (Mercurial+Git) - Rhodecode (Mercurial+Git)
- GitHub (only Git) - Bitbucket Server (only Git)
- GitLab (only Git) - GitLab (only Git)

Blessed Bob
repository public

A ‘\ A
Integration
manager

\

Bitbucket vs GitHub

Both:

- are free for academia (Bitbucket even free for small teams)
- offer code hosting, code review, issue tracking, wikis
- support pull requests

My choice: Bitbucket

But GitHub is more popular and visually more appealing

Bitbucket

‘Demo

Pull Requests

Main idea: everybody has a local copy of the repository

- every developer can commit/update at any time to his/her repository

- NO permanent connection required

Question: communication? ("Hey, | made a change, you need
to update")

Answer: pull requests

Alice Bob

(Repository)4—>(Repository)

| | [|

(Working directory) (Working directory)

Pull

Requests In

Bitbucket

‘Demo

Mercurial vs Git: Summary

DOs:

- learn the command line syntax to understand the concepts

install a merging tool (e.g. kdiff3)

pick a GUI that supports both systems

write meaningful commit messages

use pull requests

DONTs:

- do not lead religious wars about your choices, write code

Agenda

Today

- version control systems and collaborative development
Mercurial, Git, Bitbucket, GitHub
providing support

Providing Support

Request tracking:

- emall + a request tracking system

Bug tracking:
- Bitbucket/GitHub

Discussion groups/fora:
- Google Groups

Request tracking

Create a generic email (e.g. mpt@) instead of using username@

- allows to dispatch the email to a support group
- lets you to change your affiliation later

Keep track of which emails have been answered:

- sounds easy, but difficult if we have multiple persons providing support
- use Trello as a simple request tracking system
- or set up a more complex system (Request Tracker, Roundup, ...)

Trello

(0 Boards

+ []Mk:hal Kvasnica @ A

MPT < & Private - Show Menu

Reports
Re: Issue with missing regions using
the parametric QP solver
@ Oct 28

Re: How can i define polytopic
uncertaint system in mpt 3 and
compute its invariant set ?7

@ Oct 28

mpt+cplex

Strange cddmex error for vertex-ray
polyhedron

@ Nov 2

PWA reachable set computation
problem

@ Nov 17 5

Add a card...

Bugs

Wrong volume due to failed vertex
enumeration

consistent handling of Opt/yalimip,
Opt/removeEqualities

Add a card...

Features

add mpt_enum_pqp
v 8/10

introduce Opt/getRegion

unified progress reports

consistent handling of
MPTOPTIONS.verbose

Drop “_pass®/"_fall* suffixes from
tests

PolyUnion methods should not
require the function name if the
object has a single function

mpt_voronol: take points stored
row-wise

mptopt: allow
mptopt(‘'modules.ui.invariantSet.max

M avatianmat AN v smbmne

Add a card...

Bug Tracking

10 years ago:

- many options: Bugzilla, Redmine, Trac, Roundup
- tried them all, liked Roundup the most

Today:

- use issue tracking modules in Bitbucket and GitHub

Persuade your users to submit bug reports

How to Write Good Bug Reports

Check if you are using the latest version and whether the bug is known

File each issue separately

- bad: "funi errors, fun2 misbehaves, and, btw, there is a typo in fun3"

Give the report a descriptive name

- bad: "IT DOES NOT WORK!"
- good: "funi1 breaks when called with a string"

State what is the expected result and what is the actual behavior

Give steps to reproduce the issue

- give information about your setup (OS/Matlab version, etc.)
- provide a minimal code!

Discussion Groups

Fact: same questions are asked over and over again

|dea: let users provide support to each other

GO gle Search for topics . “

Groups NEW TOPIC - Mark all as read Actions v Filters a8 v O v
My groups « mpt-user Shared publicly

Home 30 of many topics G+l Manage - Members - About (¥)
Starred

This group does not have a welcome message.

Add welcome message

¥ Favorites
YALMIP PWA reachable set computation problem
By wilson420813@gmail.com - 4 posts - 6 views Nov 17
mpt-user
Gurobi Optimization B Reachable set computation
comp.soft-sys.matlab By Wilson - 6 posts - 13 views Nov 15
openbuild Sum of different norms in cost function
By persen91@gmail.com - 4 posts - 7 views Nov 14
¥ Recently viewed How to draw the explicit Hybrid MPC when state is bigger than 2.
mpt-user By legolas140@sina.com - 14 posts - 22 views Nov 10

Side note: redirect the support mail to the group

Google Groups

‘Demo

Agenda

Today

- version control systems and collaborative development
- Mercurial, Git, Bitbucket, GitHub
- providing support

Tomorrow

- unit testing
- documentation

- dissemination

