
Michal Kvasnica

TEMPO Workshop on
Software Development

Agenda

Yesterday
- version control systems and collaborative development
- Mercurial, Git, BitBucket, GitHub
- providing support

Today
- unit testing
- documentation
- dissemination

Agenda

Yesterday
- version control systems and collaborative development
- Mercurial, Git, BitBucket, GitHub
- providing support

Today
- unit testing
- documentation
- dissemination

Unit testing is like a baby breathing monitor for your code

Unit Testing

Imagine the output is incorrect. Where is the problem?

Inputs: x, y

A(x)

B(y)

+

C(z)

D(z)

*

E(v)

F(v)

Output

Solution: set of unit (atomic) tests for each function in your code

Purpose of unit testing:
- increase the confidence about the correctness of the code you write
- increase the confidence about the correctness of refactors
- make tracking down where a bug was introduced much simpler

Unit Testing: Example

Write a super-duper square root function y = mysqrt(x)

Before writing the code, specify the expected behavior:

function mysqrt_test1
assert(mysqrt(-1)==i);
assert(mysqrt(4)==2);
end

Unit Testing: Example

Write a super-duper square root function y = mysqrt(x)

Before writing the code, specify the expected behavior:

function mysqrt_test1
assert(mysqrt(-1)==i);
assert(mysqrt(4)==2);
end

Only now start writing the function
function y = mysqrt(x)
% Super-duper square root
y = x^0.5;
end

Unit Testing: Example

Write a super-duper square root function y = mysqrt(x)

Before writing the code, specify the expected behavior:

function mysqrt_test1
assert(mysqrt(-1)==i);
assert(mysqrt(4)==2);
end

Only now start writing the function
function y = mysqrt(x)
% Super-duper square root
y = x^0.5;
end

Execute your test suite often
- even after innocent-looking changes
- certainly before committing

 e = 0.6;
 y = x^e;

Unit Testing: Cover Edge Cases

When to add a unit test:
- before extending function's capabilities
- when a bug gets reported (each bug should translate into a unit test)

Example: mysqrt([1 4 9])
function y = mysqrt(x)
% Super-duper square root
y = x^0.5;
end

Unit Testing: Cover Edge Cases

When to add a unit test:
- before extending function's capabilities
- when a bug gets reported (each bug should translate into a unit test)

Example: mysqrt([1 4 9])
function y = mysqrt(x)
% Super-duper square root
y = x.^0.5;
end

Unit Testing: Cover Edge Cases

When to add a unit test:
- before extending function's capabilities
- when a bug gets reported (each bug should translate into a unit test)

Example: mysqrt([1 4 9])
function y = mysqrt(x)
% Super-duper square root
y = x.^0.5;
end

New unit tests:
function mysqrt_test2
% mysqrt with vectors
input = [-1 4 9];
expected = [i 2 3];
actual = mysqrt(input);
assert(isequal(actual, expected));
end

function mysqrt_test3
% mysqrt with matrices
input = [1 -1; 16 25];
expected = [1 i; 4 5];
actual = mysqrt(input);
assert(isequal(actual, expected));
end

Writing Good Unit Tests

A good unit test:
- does not depend on the environment and on other tests
- does not have side effects (e.g. modification of files)
- tests a single unit (method, function)
- tests edge cases
- provides a good coverage of the tested code
- runs fast (you will have hundreds of tests)
- is considered with the same value as the code (e.g. documentation)
- can be executed automatically

Writing Good Unit Tests

A good unit test:
- does not depend on the environment and on other tests
- does not have side effects (e.g. modification of files)
- tests a single unit (method, function)
- tests edge cases
- provides a good coverage of the tested code
- runs fast (you will have hundreds of tests)
- is considered with the same value as the code (e.g. documentation)
- can be executed automatically

Coverage Example

function mysqrt_test1
% mysqrt with scalars
assert(mysqrt(-1)==i);
assert(mysqrt(4)==2);
end

Super-duper square root function rejects strings:
function y = mysqrt(x)
% Super-duper square root
if ~isa(x, 'double')
 error('Only doubles please');
end
y = x.^0.5;
end

How many lines of mysqrt.m are executed by the unit test?

Coverage = (no. of lines executed)/(no. of lines total)*100%

Finding Coverage via Matlab Profiler

function y = mysqrt(x)
% Super-duper square root
if ~isa(x, 'double')
 error('Only doubles please');
end
y = x.^0.5;
end

function mysqrt_test1
% mysqrt with scalars

assert(mysqrt(-1)==i);
assert(mysqrt(4)==2);
end

Finding Coverage via Matlab Profiler

function y = mysqrt(x)
% Super-duper square root
if ~isa(x, 'double')
 error('Only doubles please');
end
y = x.^0.5;
end

function mysqrt_test4
% mysqrt with non-doubles

assertError(@() mysqrt('hello'));
assertError(@() mysqrt(struct));
end

covered!

Writing Good Unit Tests

A good unit test:
- does not depend on the environment and on other tests
- does not have side effects (e.g. modification of files)
- tests a single unit (method, function)
- tests edge cases
- provides a good coverage of the tested code
- runs fast (you will have hundreds of tests)
- is considered with the same value as the code (e.g. documentation)
- can be executed automatically

Unit Testing Frameworks for Matlab

Home-made solutions

Matlab unit testing framework (since R2013a)

MOxUnit + MOcov

Unit Testing Frameworks for Matlab

Home-made solutions

Matlab unit testing framework (since R2013a)

MOxUnit + MOcov

Unit Testing in MPT

1838 tests as of November 2016
- implemented as Matlab functions organized in subdirectories
- one test often checks several edge cases
- basic test suite runs in 10 minutes

Home-made test runner: run_all_mpt_tests
- measures the runtime (some tests are meant for stress-testing)
- links errors to the editor
- allows to execute tests selectively
- lets to re-run failed tests

run_all_mpt_tests

Demo

Unit Testing Frameworks for Matlab

Home-made solutions

Matlab unit testing framework (since R2013a)

MOxUnit + MOcov

Matlab Unit Testing Framework

classdef MysqrtTest < matlab.unittest.TestCase
 % tests for the mysqrt function

 methods (Test)
 function testScalar(testCase)
 actual = mysqrt(4);
 expected = 2;
 testCase.assertEqual(actual, expected);
 actual = mysqrt(-1);
 expected = i;
 testCase.assertEqual(actual, expected);
 end
 function testVector(testCase)
 actual = mysqrt([1 4 9]);
 expected = [1 2 3];
 testCase.assertEqual(actual, expected);
 end
 function testDouble(testCase)
 testCase.assertError(@() mysqrt('double'), 'MYSQRT:double');
 testCase.assertError(@() mysqrt(struct), 'MYSQRT:double');
 end
 end

end

>> run(MysqrtTest)
Running MysqrtTest
...
Done MysqrtTest

ans =

 1x3 TestResult array with properties:

 Name
 Passed
 Failed
 Incomplete
 Duration

Totals:
 3 Passed, 0 Failed, 0 Incomplete.
 0.042203 seconds testing time.

Matlab Unit Testing Framework

classdef MysqrtTest < matlab.unittest.TestCase
 % tests for the mysqrt function

 methods (Test)
 function testScalar(testCase)
 actual = mysqrt(4);
 expected = 3;
 testCase.assertEqual(actual, expected);
 actual = mysqrt(-1);
 expected = i;
 testCase.assertEqual(actual, expected);
 end
 function testVector(testCase)
 actual = mysqrt([1 4 9]);
 expected = [1 2 3];
 testCase.assertEqual(actual, expected);
 end
 function testDouble(testCase)
 testCase.assertError(@() mysqrt('double'), 'MYSQRT:double');
 testCase.assertError(@() mysqrt(struct), 'MYSQRT:double');
 end
 end

end

Running MysqrtTest

==
Assertion failed in MysqrtTest/testScalar.
The remainder of the test method will not run to completion.

 Framework Diagnostic:

 assertEqual failed.
 --> NumericComparator failed.
 --> The values are not equal using "isequaln".

 Actual Value:
 2
 Expected Value:
 3

 Stack Information:

 In /Applications/MATLAB_R2013a.app/toolbox/matlab/testframework/+matlab/
+unittest/+qualifications/Assertable.m (Assertable.assertEqual) at 412
 In /Users/michal/scratch/tempo/utests/MysqrtTest.m (MysqrtTest.testScalar) at 8
==

Sidenote: Checking Equality

In Matlab: 3*0.1 != 0.3

Always include a tolerance when checking equality
- assertEqual(a, b, 'AbsTol', tol) checks |a-b| ≤ tol
- assertEqual(a, b, 'RelTol', tol) checks |a-b| ≤ tol.*|b|

Matlab Unit Testing Framework

Various qualifications (same for assume…, verify…)
- assertTrue(actual)

- assertFalse(actual)

- assertEqual(actual, expected, 'AbsTol', a, 'RelTol', r)

- assertNotEqual(actual, notExpected)

- assertEmpty(actual)

- assertSize(actual, expectedSize)

- assertSubstring(actual, substring)

- assertError(@() function, identifier)

- assertWarning(@() function, identifier)

- assertWarningFree(@() function)

- ...

Matlab Unit Testing Framework

classdef MysqrtTest < matlab.unittest.TestCase
 % tests for the mysqrt function

 methods (Test)
 function testAssert(testCase)
 testCase.assumeEqual(actual, expected);
 testCase.verifyEqual(actual, expected);
 testCase.assertEqual(actual, expected);
 fprintf('End of testAssert.\n');
 end
 end
end

Different consequences when the statement is false:
- assumeEqual: abort the test, mark it as incomplete
- verifyEqual: continue with next line, mark the test as failed
- assertEqual: abort the test, mark it as failed

Matlab Unit Testing Framework

Demo

Agenda

Yesterday
- version control systems and collaborative development
- Mercurial, Git, BitBucket, GitHub
- providing support

Today
- unit testing
- documentation
- dissemination

Documentation

A good project includes:
- README.md file in the root of your repository
- inline help
- demos / examples
- static user guide: mkdocs + readthedocs.org
- dynamic user guide: jupyter + mkdocs + readthedocs.org

Documentation

A good project includes:
- README.md file in the root of your repository
- inline help
- demos / examples
- static user guide: mkdocs + readthedocs.org
- dynamic user guide: jupyter + mkdocs + readthedocs.org

README.md

Displayed when the repo is visited on Bitbucket/GitHub

Provides basic information:
- purpose of the tool
- prerequisites (e.g. Matlab)
- installation instructions
- links to additional resources (documentation, wiki, etc.)
- contact information (email, discussion group, issue tracker)
- license (usually in LICENSE.md, more on this later)

Use the markdown syntax

README.md

Demo

Documentation

A good project includes:
- README.md file in the root of your repository
- inline help
- demos / examples
- static user guide: mkdocs + readthedocs.org
- dynamic user guide: jupyter + mkdocs + readthedocs.org

Inline Help: Approach #1

Detailed help descriptions:
 mpt_sysStructInfo Returns information about system structure

 [nx,nu,ny,ndyn,nbool,ubool,intInfo] = mpt_sysStructInfo(sysStruct)

 DESCRIPTION

 Returns number of states, inputs, outputs and number of dynamics contained in
 a given system structure.

 INPUT

 sysStruct - system structure describing an LTI system

 OUTPUT

 nx - number of states
 nu - number of control inputs
 ny - number of outputs
 ndyn - number of dynamics
 nbool - number of boolean inputs
 ubool - indexes of integer (or boolean) inputs
 intInfo - structure with information about overlapping dynamics
 .Xintersect - cell array, "Xintersect{i}" is a vector of indices of dynamics

Inline Help: Approach #2

Matlab-based help descriptions:
function y = mysqrt(x)
% Super-duper square root
%
% y=mysqrt(x) computes the square root of X.
%
% X must be a double (scalar, vector, matrix).
if ~isa(x, 'double')
 error('MYSQRT:double', 'Only doubles please');
end
y = x.^0.5;
end

>> help mysqrt
 Super-duper square root

 y=mysqrt(x) computes the square root of X.

 X must be a double (scalar, vector, matrix).

Preferred, help is not a substitute for a detailed user guide

Documentation

A good project includes:
- README.md file in the root of your repository
- inline help
- demos / examples
- static user guide: mkdocs + readthedocs.org
- dynamic user guide: jupyter + mkdocs + readthedocs.org

Demos / Examples

Provide commented Matlab code that can be directly executed
% compute the square root of a scalar
y = mysqrt(5);
fprintf('The square root of 5 is: %f\n', y);

% plot the square root over an interval
x = linspace(0, 10, 100);
y = mysqrt(x);
plot(x, y);

Demos / Examples

Provide commented Matlab code that can be directly executed

Typically demos are the first thing users execute
- use scripts, not functions
- keep them simple to understand!
- make them fast to execute (no expensive computations)

Consider the demos as basic unit tests

% compute the square root of a scalar
y = mysqrt(5);
fprintf('The square root of 5 is: %f\n', y);

% plot the square root over an interval
x = linspace(0, 10, 100);
y = mysqrt(x);
plot(x, y);

Documentation

A good project includes:
- README.md file in the root of your repository
- inline help
- demos / examples
- static user guide: mkdocs + readthedocs.org
- dynamic user guide: jupyter + mkdocs + readthedocs.org

mkdocs

Python-based static site generator (pip install mkdocs)

Uses the markdown syntax with support for:
- LaTeX expressions
- tables
- figures

Live reload on save

Markdown files can be directly viewed on Bitbucket/GitHub

mkdocs

Start a new documentation (creates docs/ and mkdocs.yml)
$ cd youproject
$ mkdocs new .

Serve the documentation locally
$ mkdocs serve
$ open http://127.0.0.1:8000

Edit files (browser will automatically reload)
$ edit mkdocs.yml
$ edit docs/index.md
$ add new .md files to docs/

Build&deploy HTML versions if necessary (creates site/)
$ mkdocs build

mkdocs

Demo

readthedocs.org

Free cloud hosting for your documentation

Tied to your public repository

Automatically builds HTML docs from markdown sources after
each new commit

readthedocs.org

Demo

Documentation

A good project includes:
- README.md file in the root of your repository
- inline help
- demos / examples
- static user guide: mkdocs + readthedocs.org
- dynamic user guide: jupyter + mkdocs + readthedocs.org

Jupyter Notebooks

Command line on steroids

Fusion of markdown-styled comments, code, and results

Supports almost any language: python, Julia, Matlab, ...

Can export to HTML, PDF, markdown (for integration with mkdocs)

Jupyter Notebooks

Demo

Agenda

Yesterday
- version control systems and collaborative development
- Mercurial, Git, BitBucket, GitHub
- providing support

Today
- unit testing
- documentation
- dissemination

Dissemination

Getting your code into the hands of users involves:
- licensing
- packaging
- distribution / installing / updating

Dissemination

Getting your code into the hands of users involves:
- licensing
- packaging
- distribution / installing / updating

Licensing

Open-source licenses
- GPL2, GPL3, MIT, BSD 2-clause, BSD 3-clause, Apache, …

Semi-open licenses
- YALMIP

Closed/commercial licenses

tldrlegal.com

http://tldrlegal.com

Comparison of Licenses

Commercial
use Sublicense Hold liable Modify Disclose

source
Include

copyright
Include
license

GPL ✔ ✗ ✗ ✔ ! ! !

MIT ✔ ✔ ✗ ✔ ! !

BSD ✔ ✗ ✔ ! !

https://tldrlegal.com

✔ can ✗ cannot ! must

https://tldrlegal.com

The YALMIP License

Copyright owned by Johan Löfberg

YALMIP must be referenced when used in a published work
(give me some credit for saving your valuable time!)

YALMIP, or forks or versions of YALMIP, may not be re-distributed as a
part of a commercial product unless agreed upon with the copyright
owner (if you make money from YALMIP, let me in first!)

YALMIP is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY, without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE
(if your satellite crash or you fail your Phd due to a bug in YALMIP,
your loss!)

Forks or versions of YALMIP must include, and follow, this license in
any distribution.

Licensing

My recommendations:
- YALMIP-style license if you care about recognition
- GPL license if you are an open-source fan/fanatic
- MIT license for practically oriented authors

(allows sublicensing = making money from tailoring/consulting)

Always include LICENSE.md in the root of your repository

Dissemination

Getting your code into the hands of users involves:
- licensing
- packaging
- distribution / installing / updating

Packaging

Prepare for a release:
- make sure all tests pass
- bump the version number
- update release notes
- tag the version (hg/git tag x.y.z)
- build documentation

1:08f1cc

2:3c4ec5

3:d1d784
1.0

Packaging

Prepare for a release:
- make sure all tests pass
- bump the version number
- update release notes
- tag the version (hg/git tag x.y.z)
- build documentation

Create the installation package:
- do a clean checkout from the VCS
- remove debugging/testing files
- zip everything and upload to your server (including the docs)

Update the project's web page

Ideally, have an automated build script (or use tbxmanager)

Dissemination

Getting your code into the hands of users involves:
- licensing
- packaging
- distribution / installing / updating

Typical Life Cycle from Users' Perspective

First installation:
- download
- unzip
- set path

Updating:
- download
- unzip
- unset path to the old version
- set path to the new version
- delete old version

Bottom line: doing this manually is cumbersome

Better Solution: tbxmanager

tbxmanager is to Matlab what apt-get is to Linux:
- for end users: easily install, update, and uninstall Matlab packages
- for developers: easily disseminate packages & track usage

Available at www.tbxmanager.com

Open, anyone can register anything
(but we do not host download packages)

140 000+ packages installed since 2013 (1 every 10 minutes)

Notable users: MPT, YALMIP, OPTI Toolbox

http://www.tbxmanager.com

tbxmanager - Web Interface

Demo

tbxmanager - Matlab Interface

Basic commands:
- list available packages: tbxmanager show available
- list installed packages: tbxmanager show installed
- install a new package: tbxmanager install package_name
- update all packages: tbxmanager update
- uninstall a package: tbxmanager uninstall package_name
- re-enable packages after restart: tbxmanager restorepath

Can abbreviate commands, e.g., tbxmanager sh av

More commands are available: help tbxmanager

tbxmanager - Matlab Interface

Demo

tbxcli

Automatic generation and upload of distribution packages
- configure a simple make script tbxmake.m
- execute tbxmake

Behind the scenes:
- zip is built
- zip is uploaded to your server
- a new version is created at tbxmanager.com

tbxcli

Demo

tbxmanager 2.0

New version is in progress (stalled since 2014)
- version control integration (Bitbucket, GitHub)
- better package discovery (tags, sorting, search)
- dependencies

Help needed!
- python server-side programming
- nicer web UI
- documentation

Available at www.tbxmanager.com/v2/
- just for testing purposes, not a production version!

http://www.tbxmanager.com/v2/

tbxmanager 2.0

Demo

Take-Home Messages

Use version control (really, it's a must nowadays)

Employ existing tools (don't spend (too much) time writing your own)

Do unit testing for peace of mind (and cover edge cases)

Write a good documentation (think from the users' perspective)

Automate as much as you can (package building, testing, dissemination)

Release early, release often (and don't be afraid of bugs)

Give great support to your users! (be responsive)

Feel free to contact me at michal.kvasnica@stuba.sk

mailto:michal.kvasnica@stuba.sk

