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Motivation: sensor network localization
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Decoupled case:

o each sensor takes measurement 7); of its position y; and solves

vie{l...7h  minfx-mnl} .



Motivation: sensor network localization

Coupled case:

o sensors additionally measure the distance to their neighbors
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Equivalent formulation:

o set 11 = (x1, (1) with (1 = xa,

o set zy = (x2,(2) with (o = xs,

o and so on
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Equivalent formulation (cont.):

o new variables z; = (xy, ;)
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Motivation: sensor network localization

Equivalent formulation (cont.):
o new variables z; = (x;, ;)

o separable non-convex objectives

1 1 1 .2
fi(zi) = gHXi —nill3 + §||Cz' — i3 + 3 (lxi = Cill2 — 74)



Motivation: sensor network localization

Equivalent formulation (cont.):
o new variables z; = (x;, ;)
o separable non-convex objectives
1 1 1 _\2
filwi) = FlIxi — i3 + SlIGi = Nit1ll3 + 5 (i = Gillz = 4)

o affine coupling, {; = x;+1, can be written as

7
=1



Motivation: sensor network localization
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Optimization problem:

7 7
min Zfz(xl) s.t. Z Aiz; =0.
i=1 i=1
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Aim of distributed optimization algorithms

Find local minimizers of

N N
mwin Zf,(a:l) s.t. Z Az =10
i=1 i=1

Functions f; : R™ — R potentially non-convex.
Matrices A; € R™*™ and vectors b € R™ given.

Problem: N is large.



Overview

e Theory

- Distributed optimization algorithms

- ALADIN

e Applications

- Sensor network localization

- MPC with long horizons
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Distributed optimization problem

Find local minimizers of

N N
mxi‘n Zﬁ(x,) s.t. Z Az =1.
i=1 i=1

Functions f; : R™ — R potentially non-convex.
Matrices A; € R™*"™ and vectors b € R™ given.

Problem: N is large.



Dual decomposition

o Main idea: solve dual problem

N
max d(\) with d(A) =min > {fi(z;) + AT Az} — ATb
A T P

Evaluation of d can be parallelized.

@ H. Everett. Generalized Lagrange multiplier method for solving problems of optimum allocation of resources, 1963.
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Dual decomposition

o Main idea: solve dual problem

N
max d(\) with d(A) = min{fi(z;) + AT Asz;} — ATb
A =1

Evaluation of d can be parallelized.

o Applicable if f;s are (strictly) convex

@ H. Everett. Generalized Lagrange multiplier method for solving problems of optimum allocation of resources, 1963.
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Dual decomposition

Main idea: solve dual problem

N
max d(\) with d(A) = min{fi(z;) + AT Asz;} — ATb
A =1

Evaluation of d can be parallelized.
Applicable if f;s are (strictly) convex

For non-convex f;: duality gap possible

H. Everett. Generalized Lagrange multiplier method for solving problems of optimum allocation of resources, 1963.
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Input: Initial guesses z; € R™ and \; € R™; p >0, € > 0.
Repeat:
1. Solve decoupled NLPs
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O D. Gabay, B. Mercier. A dual algorithm for the solution of nonlinear variational problems via finite element approximations, 1976.
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ADMM (consensus variant)

Alternating Direction Method of Multipliers

Input: Initial guesses z; € R™ and \; € R™; p >0, € > 0.
Repeat:
1. Solve decoupled NLPs

min fi(y:) + A] Agyi + g 1Ai(y: — )5 -

Yi
2. Implement dual gradient steps A\ = \; + pA;(y; — z;).
3. Solve coupled QP

N N
min Z{g | Ai(ys — 2|5 — (N T Ay } st Y Ag =
T i=1

O D. Gabay, B. Mercier. A dual algorithm for the solution of nonlinear variational problems via finite element approximations, 1976.



ADMM (consensus variant)
Alternating Direction Method of Multipliers
Input: Initial guesses z; € R™ and \; € R™; p >0, € > 0.
Repeat:
1. Solve decoupled NLPs

~ p
min Filtys) + Al Aiyi + 5 14y = )5 -
2. Implement dual gradient steps A\ = \; + pA;(y; — z;).

3. Solve coupled QP

N N
win {2 aitu— o) - O A} s DA =0
T i=1

4. Update the iterates z «+ 7 and A < A\T.

O D. Gabay, B. Mercier. A dual algorithm for the solution of nonlinear variational problems via finite element approximations, 1976.
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Limitations of ADMM

1) Convergence rate of ADMM is very scaling dependent.

2) ADMM may be divergent, if f;s are nonconvex. Example:

min z; - 2o s.t. T — 22 =0.
T

o unique and regular minimizer at 27 = 25 = A* = 0.
o For p= % all sub-problems are strictly convex.

o ADMM is divergent; AT = —2).

o This talk: addresses Problem 2), mitigates Problem 1)
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Augmented Lagrangian based Alternating Direction Inexact Newton Method
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o Initial guesses z; € R™ and A € R™, p > 0, € > 0.

Repeat:
1. Solve decoupled NLPs

2
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2. Compute g; = Vfi(y;), choose H; ~ V2f;(y;), and solve coupled QP
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1
min {AyiTHiAyﬂrgiTAyi} st Y Ayt Ay)=b| AT
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ALADIN (full step variant)

Augmented Lagrangian based Alternating Direction Inexact Newton Method
Input:
o Initial guesses z; € R™ and A € R™, p > 0, € > 0.

Repeat:
1. Solve decoupled NLPs

2

Irqbi_nfi(yi)-i-/\TAiyz fllyz il

2. Compute g; = Vfi(y;), choose H; ~ V2f;(y;), and solve coupled QP
N o N
min {AyiTHiAyi + giTAyi} st Y Ayt Ay)=b| AT
Ay = (2 i=1

3. Set z+ y+ Ay and A < A7,
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Special cases

o For p — oo

= SQP

ALADIN

o For 0 < p < o0:

If H; = pAlA;, ;= AT A, then
ALADIN

ADMM

o For p=0:

ALADIN

Dual Decomposition (+ Inexact Newton)
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Assumptions
o f;s are twice continuously differentiable

o minimizer (z*, \*) regular KKT point (LICQ + SOSC satisfied)
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Local convergence

Assumptions
o f;s are twice continuously differentiable

o minimizer (z*, \*) regular KKT point (LICQ + SOSC satisfied)
o p satisfies V2f;(y;) + pX; = 0

Theorem Full-step variant of ALADIN converges locally
1. with quadratic convergence rate, if H; = V2f;(y;) + O(||y; — z*]|)

2. with linear converges rate, if || H; — V2f;(y;)|| is sufficiently small



Globalization

Definition (L1-penalty function)

o We say that =T is a descent step if ®(z+) < ®(z) for

N
Z AZCL'Z —b
i=1

)

1

N
(@) = 3 fila) + X
=1

X sufficiently large.



Globalization
Rough sketch:

o As long as V2fi(z;) + p3; = 0 the proximal objectives

filyi) = filys) + g lyi — ]

2
PIF

are strictly convex in a neighborhood of the current primal iterates ;.
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Globalization
Rough sketch:

o As long as V2fi(z;) + p3; = 0 the proximal objectives

filyi) = filys) + g lyi — ]

2
]
are strictly convex in a neighborhood of the current primal iterates ;.

o If we don't update z, y can be enforced to converge to the solution z

of the convex auxiliary problem

N N
mzin Zﬁ(zz) s.t. Z Ajz;=b.
i=1 i=1

o Strategy: if T is not a descent direction, we skip the primal update
until y is a descent and set 2z = y (similar to proximal methods)

o This strategy leads to a globalization routine for ALADIN if H; > 0.
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Inequalities

Distributed NLP with inequalities:

N ZN_ Aia:i =b
min Zfz(xz) s.t. =t
Rt hi(z;) <0.
Functions f; : R™ — R and h; : R™ — R™ potentially non-convex.

Matrices A; € R™*™ and vectors b € R™ given.

Problem: N is large.
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ALADIN (with inequalities)
Augmented Lagrangian based Alternating Direction Inexact Newton Method
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ALADIN (with inequalities)

Augmented Lagrangian based Alternating Direction Inexact Newton Method
Input:
o Initial guesses z; € R™ and A € R™, p > 0, € > 0.

Repeat:
1. Solve decoupled NLPs

min f;(y;) + AT Ay + g lys — i 2& st hi(y) <0 | Ky

2. Set g; = Vfi(y))+Vhi(yi)ri, Hi = V2 (f;(y:)+r{ hi(y;)), solve

N

N
: LT T +
min {2Ayi HiAy; + g Ayz} s.t. ;:1 Ai(yi +Ay) =0 | A

3. Set ¢+ y+ Ay and A < AT,



ALADIN (with inequalities)

Augmented Lagrangian based Alternating Direction Inexact Newton Method

Remarks:

o If approximation C; =~ C} = Vh;(y;) is available, solve QP

minay, s Zfil {%Ay;rHiAyi + giTAyi} +ATs+ g HS||§
Yisy Ai(yi +Ay;) = bts ‘ Aqp
C;Ay; = 0, iG{l,...,N}.

with g; = Vfi(y;) + (CF — C;) Tk and p > 0 instead.

3



ALADIN (with inequalities)

Augmented Lagrangian based Alternating Direction Inexact Newton Method

Remarks:

o If approximation C; =~ C} = Vh;(y;) is available, solve QP

minay, s Zfil {%Ay;rHiAyi + giTAyi} +ATs+ g HS||§
Yisy Ai(yi +Ay;) = bts ‘ Aqp
C;Ay; = 0, iG{l,...,N}.

with g; = Vfi(y;) + (CF — C;) Tk and p > 0 instead.

3

o If H; and Cj; constant, pre-compute matrix decompositions
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Sensor network localization

X1
X3
X4

Case study:
o 25000 sensors measure positions and distances in a graph

o additional inequality constraints, ||x; — n:|l2 < &, remove outliers.



ALADIN versus SQP

logyo (2 —2*[|)

o 10° primal and 7.5 % 10* dual optimization variables

o implementation in JULIA
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Nonlinear MPC

Repeat:
o Wait for state measurement 7.

o Solve

min ZZBI Wz, u;) + M(zp)

,u
Tiy1 = f(%n Uz)

(m’iaui)GXXUa

o Send vy to the process.



Mathematical Formulation

T
min / 2% + u’dt
0

z,u
&= f(x,u)

s.t.  z(0) ==z
-1<u<1l.

T1
v

ACADO Syntax

DifferentialState  x;
Control u;

DifferentialEquation f;
f << dot(x) ==u+ ...;

ocp.minLagrangeTerm( x*x+uu );
ocp.subjectTo( £ );
ocp.subjectTo( -1 <= u <=1 );

ACADO Toolkit

-

Structure

[

@ ) (*

VAN

w@@ﬁ@@
@

Algorithm

- Multiple Shooting
- Real-Time Gauss Newton
- Online Active Set Strategy

Optimized C-Code

r[1] = a[15]*c[17] + a[16]*c[19] + ... ;

r[2] = sin(al1]l*al2]) + al4] + ... ;
r[3] = cos(r[1])/exp(c[4])+ r[1] +... ;

Customized Solver
Implemented on
Chip/FPGA:

Measurement Xo

Optimal Decision u*



MPC Benchmark

Nonlinear Model, 4 States, 2 Controls

concentration of B [mol/L]

concentration of A [mollL] scaled feed flow: u1 [1/s]
40 ] 18 4
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20 7(; 05 4 14 N
10 ’ 12
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T 0 3000 6000 9000 0 3000 6000 9000 0 3000 6000 9000
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MPC Benchmark

Nonlinear Model, 4 States, 2 Controls

concentration of B [mol/L]

concentration of A [mol/L] scaled feed flow: u1 [1/s]

40 ] | ®

30 (\v_/i 10 /_\/_/v 16

20 05 1; N

1.0

0.0 L tls] 00 : t[s] 10 (S— tls]

o 3000 6000 9000 0 3000 6000 9000 o 3000 6000 9000
temperature in the reactor [C] temperature of the jacket [C] heat removal rate: u2 [kJ/s]

120 120 2 —

110 /—\—/_ 10 -4 e

100 ; 100 -6

90 - 90 B

80 1] 0 ORI s s S—_

0 3000 6000 9000 0 3000 6000 9000 0 3000 6000 9000

Run-time of ACADO code generation (not distributed)

CPU time | Percentage

Integration & sensitivities 117 ps 65 %

QP (Condensing + qpOASES) 59 us 33%

Complete real-time iteration 181 us 100 %




MPC with ALADIN

ALADIN Step 1: solve decoupled NLPs

o choose a short horizon n = % and solve

min - W;(yg) + X1y Wl o)) + 2y (v])

s.t.



MPC with ALADIN

ALADIN Step 1: solve decoupled NLPs

o choose a short horizon n = % and solve

min - U(y5) + S0, VU(yl, ol) 4+ By (y))

Y,v
vl = fyl,v]) i=0,.on—1

yleX,del.

s.t.

o Arrival and end costs depend on ALADIN iterates,

Yo(y) = 1(2,y) On(y) = M(y)

<
.

—~
<

S~—
|

My+Llly—zln Ty = Ay+Lly-

2
Zij



MPC with ALADIN

ALADIN Step 2: solve coupled QP
o As we have no constraints, QP = LQR problem
o solve all matrix-valued Ricatti equations offline

o solve online QP online by backward-forward sweep



MPC with ALADIN

ALADIN Step 2: solve coupled QP

o As we have no constraints, QP = LQR problem

o solve all matrix-valued Ricatti equations offline

o solve online QP online by backward-forward sweep
Code export

o export all online operations as optimized C-code

o NLP solver: explicit MPC (rough heuristic)

o one ALADIN iteration per sampling time, skip globalization



ALADIN + code generation (results by Yuning Jiang)

Same nonlinear model as before, n =2

concentration of A [mol/L]

concentration of B [mol/L]

tls]

40
30 —— 1.0 :
201 05 —/—\/—/7
10
0.0 - sl 0.0 - -
0 3000 6000 9000 0 3000 6000 9000
temperature in the reactor [C] temperature of the jacket [C]
120
110 4/ L{_
100
90 4
80 !l 80
0 3000 6000 9000 0 3000 6000 9000

scaled feed flow: u1 [1/s]

18
16
14 Y
1 (2] | — t[s]
o 3000 6000 9000
heat removal rate: u2 [kJ/s]
t[s]

3000

6000

9000



ALADIN + code generation (results by Yuning Jiang)

Same nonlinear model as before, n =2

concentration of A [mollL] concentration of B [mol/L] scaled feed flow: ut [1/s]
40 ]
18
30 W 1.0 /_\/—/v 16
20 05 1; N
1.0
0.0 L tls] 00 : t[s] 10 (S— tls]
0 3000 6000 9000 0 3000 6000 9000 o 3000 6000 9000
temperature in the reactor [C] temperature of the jacket [C] heat removal rate: u2 [kJ/s]
120 120 2 —
110 /—\—/_ 10 -4 e
100 ; 100 -6
90 4 90 5 8 J R
80 1] 0 ORI s s S—_
0 3000 6000 9000 0 3000 6000 9000 0 3000 6000 9000

Run-time of real-time ALADIN, 10 processors

CPU time | Percentage
Parallel explicit MPC 6 us 54 %
QP sweeps 3 us 27%
communication overhead 2 us 18%
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Conclusions

ALADIN Theory

o can solve nonconvex distributed optimization problems,

N N
min Zﬁ(:ﬂ,) s.t. Z Az, = b,
T =1
to local optimality.

o contains SQP, ADMM, and Dual Decomposition as special case

o local convergence analysis similar to SQP; globalization possible

70
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Conclusions

ALADIN Applications

o large-scale distributed sensor network:

ALADIN outperforms SQP and ADMM

o small-scale embedded MPC:
ALADIN can be used to alternate between explicit & online MPC
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