Course unit code:
N400V16_4D
Course unit title:
Selected Topics in Intelligent Control
Mode of delivery, planned learning activities and teaching methods:
lecture – 2 hours weekly (on-site method)
laboratory practice – 3 hours weekly (on-site method)
Credits allocated:
6
Recommended semester:
Riadenie procesov – (full-time, attendance method), 0. semester
Level of study:
3.
Prerequisites for registration:
none
Assesment methods:
self work
Learning outcomes of the course unit:
Students get acquainted with advanced principles and methods of modelling and control of systems using artificial neural networks and stochastic methods of optimal control.
Course contents:
Theory of artificial neural networks
Neuro-fuzzy systems
Genetic algorithms
Simulated annealing
Monte Carlo simulations
Recommended or required reading:
Basic:
  • MAN, K. – TANG, K. – KWONG, S. Genetic Algorithms: Concepts and Designs. London : Springer Verlag, 1999. 344 s. ISBN 1-85233-072-4.
  • WINTER, G. Genetic Algorithms in Engineering and Computer Science. Chichester : John Wiley & Sons, 1995. 464 s. ISBN 0-471-95859-X.
  • KVASNIČKA, V. – BEŇUŠKOVÁ, Ľ. – POSPÍCHAL, J. – FARKAŠ, I. – TIŇO, P. – KRÁĽ, A. Úvod do teórie neurónových sietí. Bratislava : IRIS-Knižní klub, 1997. 285 strany. ISBN 80-88778-30-1.
Language of instruction:
Slovak
Assessed students in total:
9

A 100 %

B 0 %

C 0 %

D 0 %

E 0 %

FX 0 %

Name of lecturer(s):
M. Klaučo (2023/2024 – Winter)
Course supervisor:
prof. Ing. Miroslav Fikar, DrSc.
Last modification:
5. 10. 2019

Department:
Department of Information Engineering and Process Control

AIS: 2019/2020   2000/2001   2000/2001  

Facebook / Youtube

Facebook / Youtube

RSS