Pracovné zaradenie:
Zástupca vedúceho oddelenia
Pedagogický pracovník
Oddelenie:
Oddelenie informatizácie a riadenia procesov (OIaRP)
Miestnosť:
NB 695
eMail:
Webová stránka:
https://www.uiam.sk/~paulen
Telefón:
+421 259 325 730
Skype:
radopaulen
ORCID iD:
0000-0002-1599-2634
WoS ResearcherID:
L-7817-2016
Google Scholar:
JBx2SewAAAAJ
Vedecká činnosť:
Výskumná skupina doc. Paulena sa zameriava na výskum v oblasti odhadu a optimálneho riadenia nelineárnych dynamických systémov s dôrazom na aplikácie v chemickom a biochemickom priemysle.
Hlavnými výskumnými témami sú:
  • garantovaná a štatistická identifikácia systémov a odhad parametrov a stavov
  • dynamická optimalizácia, globálna optimalizácia, prediktívne riadenie
Dostupnosť:

Citácie

  • Celkový počet citácií       506

M. Mojto – K. Ľubušký – M. FikarR. Paulen: Support Vector Machine-based Design of Multi-model Inferential Sensors. Editor(i): Ludovic Montastruc, Stephane Negny, V 32nd European Symposium on Computer Aided Process Engineering, Elsevier, č. 1, zv. 32, str. 1045–1050, 2022.
  • Počet citácií       1
  • Kappatou, Chrysoula D. – Odgers, James – García-Muñoz, Salvador – Misener, Ruth: An Optimization Approach Coupling Preprocessing with Model Regression for Enhanced Chemometrics. Industrial and Engineering Chemistry Research, 2022.
C. E. Valero – R. Paulen: Set-membership State Estimation for a Continuous Stirred-Tank Reactor. V 9th International Conference on Systems and Control, 2021.
  • Počet citácií       1
  • Orihuela, Luis: Comparison of the Guaranteed State Estimator and the Zonotopic Kalman Filter for Linear Time-Variant Systems. IEEE Control Systems Letters, zv. 7, str. 1512-1517, 2023.
A. R. Gottu Mukkula – M. Mateáš – M. FikarR. Paulen: Robust multi-stage model-based design of optimal experiments for nonlinear estimation. Computers & Chemical Engineering, zv. 155, str. 107499, 2021.   arXiv
  • Počet citácií       6
  • Fleitmann,L. – Pyschik,J. – Wolff,L. – Schilling,J. – Bardow,A.: Optimal experimental design of physical property measurements for optimal chemical process simulations. Fluid Phase Equilibria, zv. 557, str. 113420, 2022.
  • Lu, Q.: Molecular structure recognition by blob detection. RSC Advances, č. 57, zv. 11, str. 35879-35886, 2021.
  • Wang,J. – Dowling,A. W.: Pyomo.DOE: An open-source package for model-based design of experiments in Python. AIChE Journal, 2022.
  • Huang, Chunbing – Cattani, Federica – Galvanin, Federico: An optimal experimental design strategy for improving parameter estimation in stochastic models. Computers & Chemical Engineering, zv. 170, str. 108133, 2023.
  • Carlos {de la Calle-Arroyo} – Mariano Amo-Salas – Jesús López-Fidalgo – Licesio J. Rodríguez-Aragón – Weng Kee Wong: A methodology to D-augment experimental designs. Chemometrics and Intelligent Laboratory Systems, zv. 237, str. 104822, 2023.
  • Tian, H. – Cohen, R.Z. – Zhang, C. – Mei, Y.: Active learning-based multistage sequential decision-making model with application on common bile duct stone evaluation. Journal of Applied Statistics, č. 14, zv. 50, str. 2951-2969, 2023.
M. Mojto – K. Ľubušký – M. FikarR. Paulen: Data-based design of inferential sensors for petrochemical industry. Computers & Chemical Engineering, zv. 153, str. 107437, 2021.   arXiv
  • Počet citácií       2
  • Sanseverinatti, Carlos I. – Perdomo, Mariano M. – Clementi, Luis A. – Vega, Jorge R.: An Adaptive Soft Sensor for On-Line Monitoring the Mass Conversion in the Emulsion Copolymerization of the Continuous SBR Process. Macromolecular Reaction Engineering, 2023.
  • Ikonen, Teemu J. – Bergman, Samuli – Corona, Francesco: A Bayesian inferential sensor for predicting the reactant concentration in an exothermic chemical process. Chemometrics and Intelligent Laboratory Systems, zv. 241, str. 104942, 2023.
M. Mojto – K. Ľubušký – M. FikarR. Paulen: Data-based Industrial Soft-sensor Design via Optimal Subset Selection. Editor(i): Metin Türkay, Rafiqul Gani, V 31st European Symposium on Computer Aided Process Engineering, Elsevier, zv. 31, str. 1247–1252, 2021.
  • Počet citácií       1
  • Shan, Baoming – Ma, Cuncheng – Niu, Chengqun – Xu, Qilei – Zhu, Zhaoyou – Wang, Yinglong – Zhang, Fangkun: Soft sensor model predictive control for azeotropic distillation of the separation of DIPE/IPA/water mixture. Journal of the Taiwan Institute of Chemical Engineers, zv. 152, 2023.
S. Subramanian – S. Lucia – R. Paulen – S. Engell: Tube-enhanced multi-stage model predictive control for flexible robust control of constrained linear systems with additive and parametric uncertainties. International Journal of Robust and Nonlinear Control, č. 9, zv. 31, str. 4458–4487, 2021.
  • Počet citácií       13
  • Alvarado,I. – Krupa,P. – Limon,D. – Alamo,T.: Tractable robust MPC design based on nominal predictions. Journal of Process Control, zv. 111, str. 75-85, 2022.
  • Shi, Y. – Zhang, K.: Advanced model predictive control framework for autonomous intelligent mechatronic systems: A tutorial overview and perspectives. Annual Reviews in Control, zv. 52, str. 170-196, 2021.
  • Mowbray, M. – Petsagkourakis, P. – del Rio-Chanona, E.A. – Zhang, D.: Safe chance constrained reinforcement learning for batch process control. Computers and Chemical Engineering, zv. 157, str. 107630, 2022.
  • Farajzadeh Devin,M. G. – Hosseini Sani,S. K.: Two-loop robust model predictive control with improved tube for industrial applications. International Journal of Systems Science, 2022.
  • Parihar, Sushma – Shah, Pritesh – Sekhar, Ravi – Lagoo, Jui: Model Predictive Control and Its Role in Biomedical Therapeutic Automation: A Brief Review. Applied System Innovation, č. 6, zv. 5, str. 118, 2022.
  • Bastos,G., Jr. – Franco,E.: Dynamic tube model predictive control for a class of soft manipulators with fluidic actuation. International Journal of Robust and Nonlinear Control, 2023.
  • Schwenkel, Lukas – Koehler, Johannes – Mueller, Matthias A. A. – Allgoewer, Frank: Model Predictive Control for Linear Uncertain Systems Using Integral Quadratic Constraints. IEEE Transactions on Automatic Control, č. 1, zv. 68, str. 355-368, 2023.
  • Sebghati, Ashkan – Esfahani, Mahyar Madani – Shamaghdari, Saeed: On the design of efficient optimal tube-based robust model predictive control: Quasi-H approach. Iet Control Theory and Applications, č. 12, zv. 17, str. 1703-1719, 2023.
  • Bjorvand, Simen – Jaschke, Johannes: Improving Primal Decomposition for Multistage MPC Using an Extended Newton Method. IEEE Control Systems Letters, zv. 7, str. 2677-2682, 2023.
  • Zhang, Qiang – Liu, Ping – Chen, Yu – Deng, Quan – Tong, Angxin: Disturbance Observer-Based Terminal Sliding Mode Tracking Control for a Class of Nonlinear SISO Systems with Input Saturation. Processes, č. 7, zv. 11, 2023.
  • Li, Yang – Vilathgamuwa, D. Mahinda – Quevedo, Daniel E. – Lee, Chih Feng – Zou, Changfu: Ensemble Nonlinear Model Predictive Control for Residential Solar Battery Energy Management. IEEE Transactions on Control Systems Technology, č. 5, zv. 31, str. 2188-2200, 2023.
  • Janatian, Nima – Sharma, Roshan: A robust model predictive control with constraint modification for gas lift allocation optimization. Journal of Process Control, zv. 128, str. 102996, 2023.
  • Zhou, Chengyu – Jia, Li – Zhou, Yang: Tube-based batch model predictive control for polystyrene polymerization reaction process. Asia-pacific Journal of Chemical Engineering, č. e2906, 2023.
K. Kusumo – L. Gomoescu – R. Paulen – S. García Muñoz – C. C. Pantelides – N. Shah – B. Chachuat: Nested Sampling Strategy for Bayesian Design Space Characterization. Editor(i): Sauro Pierucci, Flavio Manenti, Giulia Luisa Bozzano, Davide Manca, V 30th European Symposium on Computer Aided Process Engineering, Elsevier, zv. 30, str. 1957–1962, 2020.
  • Počet citácií       4
  • Kino-Oka,M. – Hayashi,Y. – A. Udugama,I. – Hirono,K. – Sugiyama,H.: A Dynamic and Probabilistic Design Space Determination Method for Mesenchymal Stem Cell Cultivation Processes. Industrial and Engineering Chemistry Research, č. 20, zv. 61, str. 7009 - 7019, 2022.
  • Kaiya,Y. – Tamura,R. – Tsuda,K.: Understanding Chemical Processes with Entropic Sampling. Organic Process Research and Development, č. 12, zv. 26, str. 3276-3282, 2022.
  • Udugama, Isuru A. – Badr, Sara – Hirono, Keita – Scholz, Benedikt X. – Hayashi, Yusuke – Kino-oka, Masahiro – Sugiyama, Hirokazu: The role of process systems engineering in applying quality by design (QbD) in mesenchymal stem cell production. Computers & Chemical Engineering, zv. 172, str. 108144, 2023.
  • Thomas Oberleitner – Thomas Zahel – Christoph Herwig: A Method for Finding a Design Space as Linear Combinations of Parameter Ranges for Biopharmaceutical Development. V 33rd European Symposium on Computer Aided Process Engineering, str. 909-914, 2023.
C. E. Valero – M. Villanueva – B. Houska – R. Paulen: Set-Based State Estimation: A Polytopic Approach. Editor(i): Rolf Findeisen, Sandra Hirche, Klaus Janschek, Martin Mönnigmann, V Preprints of the 21st IFAC World Congress (Virtual), Berlin, Germany, July 12-17, 2020, zv. 21, str. 11428–11433, 2020.     arXiv
  • Počet citácií       3
  • Mu, Bowen – Yang, Xuejiao – Shen, Kai – Scott, Joseph K.: Improved Interval Reachability Bounds for Nonlinear Discrete-Time Systems using an Efficient One-Dimensional Partitioning Method. V 2021 American Control Conference (ACC), str. 3664-3669, 2021.
  • Ragot, José: Guaranteed consistency between measurements and parameter systems with correlated additive and multiplicative uncertainties. Complex Engineering Systems, zv. 2, str. 10, 2022.
  • Dawoud, Mohammed M. – Liu, Changxin – Alanwar, Amr – Johansson, Karl H.: Differentially Private Set-Based Estimation Using Zonotopes. V 2023 European Control Conference, ECC, 2023.
S. Thangavel – R. Paulen – S. Engell: Dual multi-stage NMPC using sigma point principles. Editor(i): Rolf Findeisen, Sandra Hirche, Klaus Janschek, Martin Mönnigmann, V Preprints of the 21st IFAC World Congress (Virtual), Berlin, Germany, July 12-17, 2020, zv. 21, str. 11394–11401, 2020.     arXiv
  • Počet citácií       1
  • Polcz, P. – Csutak, B. – Szederkényi, G.: Reconstruction of Epidemiological Data in Hungary Using Stochastic Model Predictive Control. Applied Sciences (Switzerland), č. 3, zv. 12, str. 1113, 2022.
S. Thangavel – R. Paulen – S. Engell: Multi-stage NMPC using sigma point principles. V 6th Conference on Advances in Control and Optimization of Dynamical Systems ACODS 2020, Elsevier, zv. 53, str. 386–391, 2020.     arXiv
  • Počet citácií       2
  • Panda, Atanu – Thirunavukarasu, Narayani – Panda, Rames C.: Predictive control scheme by integrating event-triggered mechanism and disturbance observer under actuator failure and sensor fault. Proceedings of the Institution of Mechanical Engineers Part I-journal of Systems and Control Engineering, 2023.
  • Landgraf, Daniel – Voelz, Andreas – Berkel, Felix – Schmidt, Kevin – Specker, Thomas – Graichen, Knut: Probabilistic prediction methods for nonlinear systems with application to stochastic model predictive control. Annual Reviews in Control, č. 100905, zv. 56, 2023.
S. Thangavel – R. Paulen – S. Engell: Robust Multi-Stage Nonlinear Model Predictive Control Using Sigma Points. Processes, č. 7, zv. 8, str. 0851, 2020.
  • Počet citácií       5
  • Propson,T. – Jackson,B. E. – Koch,J. – Manchester,Z. – Schuster,D. I.: Robust Quantum Optimal Control with Trajectory Optimization. Physical Review Applied, č. 1, zv. 17, str. 014036, 2022.
  • Polcz, P. – Csutak, B. – Szederkényi, G.: Reconstruction of Epidemiological Data in Hungary Using Stochastic Model Predictive Control. Applied Sciences (Switzerland), č. 3, zv. 12, str. 1113, 2022.
  • Soloperto, Raffaele – Muller, Matthias A. – Allgower, Frank: Guaranteed Closed-Loop Learning in Model Predictive Control. IEEE Transactions on Automatic Control, č. 2, zv. 68, str. 991-1006, 2023.
  • Casas, Carlos Andres Elorza – Valipour, Mahshad – Sandoval, Luis A. Ricardez: Multi-scenario and multi-stage robust NMPC with state estimation application on the Tennessee-Eastman process. Control Engineering Practice, zv. 139, str. 105635, 2023.
  • Kaplan, Ido – Erew, Muhammad – Piasetzky, Yonatan – Goldstein, Moshe – Oz, Yaron – Suchowski, Haim: Segmented composite design of robust single-qubit quantum gates. Physical Review A, zv. 108, str. 042401, 2023.
S. Thangavel – R. Paulen – S. Engell: Adaptive multi-stage NMPC using sigma point principles. V European Control Conference 2020, str. 196–201, 2020.
  • Počet citácií       3
  • Bonzanini, A.D. – Paulson, J.A. – Makrygiorgos, G. – Mesbah, A.: Fast approximate learning-based multistage nonlinear model predictive control using Gaussian processes and deep neural networks. Computers and Chemical Engineering, str. 107174, 2021.
  • Meng,F. – Shen,X. – Karimi,H. R.: Emerging methodologies in stability and optimization problems of learning-based nonlinear model predictive control: A survey. International Journal of Circuit Theory and Applications, č. 11, zv. 50, str. 4146-4170, 2022.
  • Landgraf, Daniel – Voelz, Andreas – Berkel, Felix – Schmidt, Kevin – Specker, Thomas – Graichen, Knut: Probabilistic prediction methods for nonlinear systems with application to stochastic model predictive control. Annual Reviews in Control, č. 100905, zv. 56, 2023.
K. Kusumo – L. Gomoescu – R. Paulen – S. García Muñoz – C. C. Pantelides – N. Shah – B. Chachuat: Bayesian Approach to Probabilistic Design Space Characterization: A Nested Sampling Strategy. Industrial & Engineering Chemistry Research, č. 6, zv. 59, str. 2396–2408, 2020.
  • Počet citácií       10
  • Vandercammen, A. – Dessoy, S. – Sanders, M. – Pysik, A. – Geldhof, G. – Schenkendorf, R. – von Stosch, M. – Mariti, M. – Varsakelis, C.: Working within the design space: Do our static process characterization methods suffice?. Pharmaceutics, č. 6, zv. 12, str. 1-15, 2020.
  • Granados-Ortiz, F.-J. – Ortega-Casanova, J.: Machine learning-aided design optimization of a mechanical micromixer. Physics of Fluids, č. 6, zv. 33, str. 063604, 2021.
  • Demis, P. – Kucherenko, S. – Klymenko, O.V.: Design Space Approximation with Gaussian Processes. Computer Aided Chemical Engineering, zv. 50, str. 905-911, 2021.
  • Jiang,S. -. – Papageorgiou,L. G. – Bogle,I. D. L. – Charitopoulos,V. M.: Investigating the Trade-Off between Design and Operational Flexibility in Continuous Manufacturing of Pharmaceutical Tablets: A Case Study of the Fluid Bed Dryer. Processes, č. 3, zv. 10, str. 454, 2022.
  • Destro,F. – Barolo,M.: A review on the modernization of pharmaceutical development and manufacturing – Trends, perspectives, and the role of mathematical modeling. International journal of pharmaceutics, zv. 620, str. 121715, 2022.
  • Destro, Francesco – Barolo, Massimiliano: A review on the modernization of pharmaceutical development and manufacturing - Trends, perspectives, and the role of mathematical modeling. INTERNATIONAL JOURNAL OF PHARMACEUTICS, zv. 620, str. 121715, 2022.
  • Peterson, John J.: Response surfaces, blocking, and split plots: A predictive distribution case study. Quality Engineering, č. 1, zv. 35, str. 172-191, 2023.
  • Saadeh,Q. – Naujok,P. – Wu,M. – Philipsen,V. – Thakare,D. – Scholze,F. – Buchholz,C. – Stadelhoff,C. – Wiesner,T. – Soltwisch,V.: Nested Sampling aided determination of tantalum optical constants in the EUV spectral range. Applied Optics, č. 33, zv. 61, str. 10032-10042, 2022.
  • Huayu Tian – Jnana Sai Jagana – Qi Zhang – Marianthi Ierapetritou: Feasibility/Flexibility-based optimization for process design and operations. Computers & Chemical Engineering, zv. 180, str. 108461, 2024.
  • Steven Sachio – Cleo Kontoravdi – Maria M. Papathanasiou: A model-based approach towards accelerated process development: A case study on chromatography. Chemical Engineering Research and Design, zv. 197, str. 800-820, 2023.
A. R. Gottu Mukkula – R. Paulen: Optimal experiment design in nonlinear parameter estimation with exact confidence regions. Journal of Process Control, zv. 83, str. 187–195, 2019.
  • Počet citácií       3
  • Baltodano, Eleaneth – Hanley, Georgia – Vargas, Rolando – Ramírez, Nils – Castillo, Luis: Design of Experiments Assessment for the Determination of Moisture Content in Five Herbal Raw Materials Contained in Tea Products. Borneo Journal of Pharmacy, č. 1, zv. 3, 2020.
  • Himmelsbach, M. – Kroll, A.: On Optimal Test Signal Design and Parameter Identification Schemes for Dynamic Takagi-Sugeno Fuzzy Models Using the Fisher Information Matrix. International Journal of Fuzzy Systems, 2021.
  • Reddy, R.S. – Arepally, D. – Datta, A.K.: Inverse problems in food engineering: A review. Journal of Food Engineering, zv. 319, str. 110909, 2022.
  • Počet citácií       3
  • Zhang,L. – Li,P. – Chen,L. – Xia,S. – Kong,R. – Ge,Y. – Feng,H.: Entropy generation rate minimization for steam methane reforming reactor heated by molten salt. Energy Reports, zv. 6, str. 685-697, 2020.
  • You, F. – Zhang, S. – Jia, R.: Transfer learning for end-product quality prediction of batch processes using domain-adaption joint-Y PLS. Computers and Chemical Engineering, č. 106943, zv. 140, 2020.
  • Palma-Flores, Oscar – Andres-Martinez, Oswaldo – Ricardez-Sandoval, Luis A.: Optimal control and the Pontryagin's principle in chemical engineering: History, theory, and challenges. AICHE JOURNAL, č. 8, zv. 68, str. e17777, 2022.
C. E. Valero – R. Paulen: Effective Recursive Set-membership State Estimation for Robust Linear MPC. V 12th IFAC Symposium on Dynamics and Control of Process Systems, including Biosystems DYCOPS 2019, Elsevier, str. 486–491, 2019.
  • Počet citácií       3
  • Wang,Z. -. – Li,X. – Wang,Y. – Ji,Z. -.: Hyperparallel space set-membership filtering based state estimation algorithm for nonlinear system. Kongzhi yu Juece/Control and Decision, č. 9, zv. 37, str. 2287-2295, 2022.
  • Wang,Z. -. – Cheng,L. – Wang,Y. – Ji,Z. -.: Orthometric hyperparallel spatial directional expansion filtering based fault diagnosis method. Kongzhi yu Juece/Control and Decision, č. 12, zv. 37, str. 3223-3232, 2022.
  • Wang, Zi-Yun – Zhang, Zi-Meng – Wang, Yan – Zhan, Ya-Cong – Ji, Zhi-Cheng: Nonlinear system state estimation based on axisymmetric box space filter under uncertain noise; [不确定噪声下基于轴对称盒空间滤波的非线性系统状态估计]. Kongzhi Lilun Yu Yingyong/control Theory and Applications, č. 5, zv. 40, str. 883 – 890, 2023.
P. Valiauga – R. Paulen: Moving-horizon Guaranteed Parameter Estimation. V 12th IFAC Symposium on Dynamics and Control of Process Systems, including Biosystems DYCOPS 2019, Elsevier, str. 112–117, 2019.
  • Počet citácií       1
  • Bernardi, E. – Morato, M.M. – Mendes, P.R.C. – Normey-Rico, J.E. – Adam, E.J.: Fault-tolerant energy management for an industrial microgrid: A compact optimization method. International Journal of Electrical Power and Energy Systems, zv. 124, str. 106342, 2021.
M. Villanueva – X. Feng – R. Paulen – B. Chachuat – B. Houska: Convex Enclosures for Constrained Reachability Tubes. V 12th IFAC Symposium on Dynamics and Control of Process Systems, including Biosystems DYCOPS 2019, Elsevier, str. 118–123, 2019.
  • Počet citácií       2
  • Scott,J. K. – Shen,K.: Exploiting nonlinear invariants and path constraints to achieve tighter reachable set enclosures using differential inequalities. Mathematics of Control, Signals, and Systems, č. 1, zv. 32, str. 101-127, 2020.
  • Mishra, P.K. – Wang, T. – Gazzola, M. – Chowdhary, G.: Centralized model predictive control with distributed adaptation. V Proceedings of the IEEE Conference on Decision and Control, str. 697-703, 2020.
C. E. Valero – R. Paulen: Set-Theoretic State Estimation for Multi-output Systems using Block and Sequential Approaches. Editor(i): M. Fikar and M. Kvasnica, V Proceedings of the 22nd International Conference on Process Control, Slovak Chemical Library, Štrbské Pleso, Slovakia, str. 268–273, 2019.
  • Počet citácií       1
  • Rauh, A. – Bourgois, A. – Jaulin, L.: Union and intersection operators for thick ellipsoid state enclosures: Application to bounded-error discrete-time state observer design. Algorithms, č. 3, zv. 14, str. 88, 2021.
W. Daosud – P. Kittisupakorn – M. Fikar – S. Lucia – R. Paulen: Efficient robust nonlinear model predictive control via approximate multi-stage programming: A neural networks based approach. Editor(i): Anton A. Kiss, Edwin Zondervan, Richard Lakerveld, Leyla Özkan, V 29th European Symposium on Computer Aided Process Engineering, Elsevier, zv. 29, str. 571–576, 2019.
  • Počet citácií       3
  • Mitsos, A. – Kevrekidis, I.G. – Mhamdi, A. – Caspari, A. – Hamacher, N.C. – Vaupel, Y.: Accelerating nonlinear model predictive control through machine learning. Journal of Process Control, zv. 92, str. 261-270, 2020.
  • Thombre, M. – (Joyce) Yu, Z. – Jäschke, J. – Biegler, L.T.: Sensitivity-Assisted multistage nonlinear model predictive control: Robustness, stability and computational efficiency. Computers and Chemical Engineering, zv. 148, str. 107269, 2021.
  • Yu, Zhou (Joyce) – Biegler, Lorenz T.: Sensitivity-assisted Robust Nonlinear Model Predictive Control with Scenario Generation. IFAC PAPERSONLINE, č. 2, zv. 53, str. 7204-7209, 2020.
T. B. L. Tran – M. Törngren – H. D. Nguyen – R. Paulen – N. W. Gleason – T. H. Duong: Trends in preparing cyber-physical systems engineers. Cyber-Physical Systems, č. 2, zv. 5, str. 65–91, 2019.
  • Počet citácií       15
  • Andreev, A. – Nefedyev, Y. – Demina, N.: The Study of Dynamic Parameters of Corporate Graphic Stations Using Methods of Adaptive Regression Multi-Parameter Modeling. V 2020 IEEE East-West Design and Test Symposium, EWDTS 2020 - Proceedings, str. 9225025, 2020.
  • Mäkiö, E. – Azmat, F. – Ahmad, B. – Harrison, R. – Colombo, A.W.: T-CHAT educational framework for teaching cyber-physical system engineering. European Journal of Engineering Education, 2021.
  • Hernandez-de-Menendez, M. – Escobar Díaz, C.A. – Morales-Menendez, R.: Engineering education for smart 4.0 technology: a review. International Journal on Interactive Design and Manufacturing, č. 3, zv. 14, str. 789-803, 2020.
  • Francisco, R. – de Freitas Rocha Loures, E. – Santos, E.A.P. – Deschamps, F.: Working in the 4.0 Era: An Ontology for Competence Management in the Fourth Industrial Revolution. V Springer Proceedings in Mathematics and Statistics, str. 491-502, 2020.
  • Anatolijs Zabasta – Nadezda Kunicina – Oksana Nikiforova – Joan Peuteman – Alexander K. Fedotov – Alexander S. Fedotov – Andrii Hnatov: Chapter 11 - Development of industry oriented cross-domain study programs in cyber-physical systems for Belarusian and Ukrainian universities. V Multi-Paradigm Modelling Approaches for Cyber-Physical Systems, Editor(i): Bedir Tekinerdogan and Dominique Blouin and Hans Vangheluwe and Miguel Goulão and Paulo Carreira and Vasco Amaral, Academic Press, str. 271-292, 2021.
  • Nefedyev, Y. – Mubarakshina, R. – Andreev, A. – Demina, N.: The study of geodynamic parameters on the basis of adaptive regression modeling. Studies in Systems, Decision and Control, zv. 338, str. 225-236, 2021.
  • Nefedyev, Y. – Andreev, A. – Mubarakshina, R. – Demina, N. – Andreeva, Z.: The Use of Deterministic Mathematical Modeling for the Prediction of Dynamic Geophysical Processes. V 2021 IEEE East-West Design and Test Symposium, EWDTS 2021 - Proceedings, 2021.
  • Li,Y.: Fractional differential equations in National Sports Training in Colleges and Universities. Applied Mathematics and Nonlinear Sciences, 2021.
  • Kosvyra,A. – Filos,D. – Mountford,N. – Cusack,T. – Isomursu,M. – Chouvarda,I.: PhD courses and the intersectoral experience: A comprehensive survey. V International Conference on Higher Education Advances, str. 1131-1139, 2021.
  • Roy,S. – Dong,Y. – Baber,L. – Ahn,B.: Classroom to Workplace: Knowledge and Skills Learned by Recently Hired Aerospace Engineers. Journal of Aerospace Information Systems, č. 4, zv. 19, str. 317-329, 2022.
  • Virmani,N. – Salve,U. R.: Analysing key social implications of implementation of Industry 4.0 in manufacturing industries. International Journal of Process Management and Benchmarking, č. 3, zv. 12, str. 277-299, 2022.
  • Aydin,H. – Sertbaş,A.: CYBER SECURITY IN INDUSTRIAL CONTROL SYSTEMS (ICS): A SURVEY OF ROWHAMMER VULNERABILITY. Applied Computer Science, č. 2, zv. 18, str. 86-100, 2022.
  • Paul,P. K.: Cyber physical systems, machine learning & deep learning-Emergence as an academic program and field for developing digital society, str. 67-83, 2022.
  • Peele-Eady, Tryphenia B. – Reid, Tahira: What Difference Does Difference Make? A Case Study of Racial and Ethnic Diversity in a Summer Intensive Research Institute. 2023.
  • Almacen, Rose Mary – Castilla, Delfa – Gonzales, Gamaliel – Gonzales, Roselyn – Costan, Felix – Costan, Emily – Enriquez, Lynne – Batoon, Jannen – Villarosa, Rica – Aro, Joerabell Lourdes – Evangelista, Samantha Shane – Maturan, Fatima – Wenceslao, Charldy – Atibing, Nadine May – Ocampo, Lanndon: Preparedness Indicator System for Education 4.0 with FUCOM and Rough Sets. Systems, č. 6, zv. 11, 2023.
A. Sharma – R. Valo – M. KalúzR. PaulenM. Fikar: Implementation of optimal strategy to economically improve batch membrane separation. Journal of Process Control, zv. 76, str. 155–164, 2019.
  • Počet citácií       3
  • Wu, Xiaolong – Han, Honggui – Qiao, Junfei: Data-Driven Intelligent Warning Method for Membrane Fouling. IEEE Transactions on Neural Networks and Learning Systems, č. 8, zv. 32, str. 3318-3329, 2021.
  • Wu, Xiao-Long – Han, Hong-Gui – Zhang, Hui-Juan – Qiao, Jun-Fei: Intelligent Warning of Membrane Fouling Based on Robust Deep Neural Network. International Journal of Fuzzy Systems, 2021.
  • Trystram,G.: Automatic control of industrial food processes, str. 351-390, 2022.
S. Thangavel – S. Lucia – R. Paulen – S. Engell: Dual robust nonlinear model predictive control: A multi-stage approach. Journal of Process Control, zv. 72, str. 39–51, 2018.
  • Počet citácií       26
  • Piceno-Diaz, Ennio R. – Ricardez-Sandoval, Luis A. – Gutierrez-Limon, Miguel A. – Mendez-Acosta, Hugo O. – Puebla, Hector: Robust Nonlinear Model Predictive Control for Two-Stage Anaerobic Digesters. Industrial & Engineering Chemistry Research, č. 52, zv. 59, str. 22559-22572, 2020.
  • Skogestad, S. – Krishnamoorthy, D. – Jaschke, J.: Multistage model predictive control with online scenario tree update using recursive Bayesian weighting. V 2019 18th European Control Conference, ECC 2019, str. 1443-1448, 2019.
  • Dyro,R. – Harrison,J. – Sharma,A. – Pavone,M.: Particle MPC for Uncertain and Learning-Based Control. V IEEE International Conference on Intelligent Robots and Systems, str. 7127-7134, 2021.
  • Mitrovic, A. – Clayton, G.M. – Leang, K.K.: Analysis and experimental comparison of range-based control for dual-stage nanopositioners. Mechatronics, č. 102371, zv. 69, 2020.
  • Hewing, Lukas – Wabersich, Kim P. – Menner, Marcel – Zeilinger, Melanie N.: Learning-Based Model Predictive Control: Toward Safe Learning in Control. V Annual Review of Control, Robotics, and Autonomous Systems, Vol 3, 2020, str. 269-296, 2020.
  • Walter Kähm: Thermal stability criteria embedded in advanced control systems for batch process intensification, University of Cambridge, University of Cambridge, 2019.
  • Soloperto, Raffaele – Koehler, Johannes – Allgoewer, Frank: Augmenting MPC Schemes With Active Learning: Intuitive Tuning and Guaranteed Performance. IEEE Control Systems Letters, č. 3, zv. 4, str. 713-718, 2020.
  • Varga, T. – Nagy, L. – Kummer, A.: NMPC-based control scheme for a semi-batch reactor under parameter uncertainty. Computers and Chemical Engineering, zv. 141, str. 106998, 2020.
  • Koehler, Johannes – Koetting, Peter – Soloperto, Raffaele – Allgoewer, Frank – Mueller, Matthias A.: A robust adaptive model predictive control framework for nonlinear uncertain systems. International Journal of Robust and Nonlinear Control, 2020.
  • Kummer, A. – Nagy, L. – Varga, T.: NMPC based Temperature Control in Fed-batch Reactor to Avoid Thermal Runaway. Computer Aided Chemical Engineering, zv. 48, str. 1087-1092, 2020.
  • Hu, J. – Zheng, S. – Liu, X. – Deng, J. – Wang, M. – Yan, F.: Optimizing the fault diagnosis and fault-tolerant control of selective catalytic reduction hydrothermal aging using the Unscented Kalman Filter observer. Fuel, zv. 288, str. 119827, 2021.
  • Yoo, H. – Kim, B. – Kim, J.W. – Lee, J.H.: Reinforcement learning based optimal control of batch processes using Monte-Carlo deep deterministic policy gradient with phase segmentation. Computers and Chemical Engineering, zv. 144, str. 107133, 2021.
  • Arcari, Elena – Hewing, Lukas – Zeilinger, Melanie N.: An Approximate Dynamic Programming Approach for Dual Stochastic Model Predictive Control. Ifac Papersonline, č. 2, zv. 53, str. 8105-8111, 2020.
  • AitSahed, Oussama – Kara, Kamel – Benrabah, Mohamed – Hadjili, Mohamed Laid: Constrained Nonlinear Predictive Control Using Neural Networks and Teaching-Learning-Based Optimization. Journal of Control Automation and Electrical Systems, č. 5, zv. 32, str. 1228 - 1243, 2021.
  • Mappas, V. – Gangadharan, N. – Espaas, T. – Conejeros, R. – Ismaili, R.A. – Adloor, S.D. – Kähm, W. – Vassiliadis, V.S. – Nolasco, E. – Scott, F. – Zhang, Q.: Optimal control in chemical engineering: Past, present and future. Computers and Chemical Engineering, zv. 155, str. 107528, 2021.
  • Kim,S. – Oshima,M. – Sotowa,K. -. – Shardt,Y. A. W.: Effective Re-identification of a Multivariate Process under Model Predictive Control Using Information from Plant-Model Mismatch Detection, zv. 49, 2022.
  • Ren, R. – Zou, Y.-Y. – Li, S.-Y.: Enhanced active learning for model-based predictive control with safety guarantees [具有安全性保证的基于增强主动学习的模型预测控制]. Kongzhi Lilun Yu Yingyong/Control Theory and Applications, č. 11, zv. 38, str. 1735-1742, 2021.
  • Chen,X. -. – Sun,J. -. – Zhang,H. -.: Multi-stage nonlinear model predictive polymerization reaction control with online scenario update. Kongzhi Lilun Yu Yingyong/Control Theory and Applications, č. 4, zv. 39, str. 770-776, 2022.
  • Melatti, Igor – Mari, Federico – Mancini, Toni – Prodanovic, Milan – Tronci, Enrico: A Two-Layer Near-Optimal Strategy for Substation Constraint Management via Home Batteries. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, č. 8, zv. 69, str. 8566-8578, 2022.
  • Jeong,C. – Sharma,R.: Stochastic MPC for Optimal Operation of Hydropower Station under Uncertainty. V IFAC-PapersOnLine, str. 155-160, 2022.
  • Sun, Jing-Gao – Chen, Xian-Feng – Su, Guang-Hao – Wang, Meng – Pan, Hong-Guang: Multi-stage Nonlinear Model Predictive Control with Online Scenario Update for Semi-batch Polymerization Processes. International Journal of Control Automation and Systems, č. 10, zv. 20, str. 3187-3197, 2022.
  • Arana-Jimenez, Manuel – Medvedev, Alexander V. – Chzhan, Ekaterina: A Nonparametric Dual Control Algorithm of Multidimensional Objects with Interval-Valued Observations. Axioms, č. 2, zv. 12, str. 193, 2023.
  • Soloperto, Raffaele – Mueller, Matthias A. – Allgoewer, Frank: Guaranteed Closed-Loop Learning in Model Predictive Control. IEEE Transactions on Automatic Control, č. 2, zv. 68, str. 991-1006, 2023.
  • Casas, Carlos Andres Elorza – Valipour, Mahshad – Sandoval, Luis A. Ricardez: Multi-scenario and multi-stage robust NMPC with state estimation application on the Tennessee-Eastman process. Control Engineering Practice, zv. 139, str. 105635, 2023.
  • Byun, Ha-Eun – Kim, Boeun – Lee, Jay H.: Embedding active learning in batch-to-batch optimization using reinforcement learning. Automatica, zv. 157, str. 111260, 2023.
  • Burggräf, Peter – Steinberg, Fabian – Nettesheim, Philipp – Vedder, Marian – Kolter, Gerald: Cyber-Physical Optimization of Production Processes Using Two AIs: A Robot-Guided MAG Welding Use-Case. V Procedia CIRP, str. 885 – 889, 2023.
N. Peric – R. Paulen – M. Villanueva – B. Chachuat: Set-membership nonlinear regression approach to parameter estimation. Journal of Process Control, zv. 70, str. 80–95, 2018.
  • Počet citácií       10
  • Jung, Falco – Caspari, Adrian – Mhamdi, Adel – Mitsos, Alexander: Set-Membership Parameter Estimation: Improved Understanding of Microgel Polymerization. Ifac Papersonline, č. 1, zv. 52, str. 580-585, 2019.
  • Walz, Olga – Djelassi, Hatim – Mitsos, Alexander: Optimal experimental design for optimal process design: A trilevel optimization formulation. Aiche Journal, č. 1, zv. 66, str. e16788, 2020.
  • Krichen, E. – Rapaport, A. – Fouilland, E.: About frame estimation of growth functions and robust prediction in bioprocess modeling. Journal of Process Control, zv. 85, str. 121-135, 2020.
  • Zhao, Y. – Wang, N. – Wei, D.: Optimal gain processing method of heterogeneous noises based on Kalman filtering framework and its application [卡尔曼滤波框架下优化增益异类噪声处理方法及其应用]. Guofang Keji Daxue Xuebao/Journal of National University of Defense Technology, č. 2, zv. 43, str. 11-18, 2021.
  • Li, Wenyu – Hegde, Arun – Oreluk, James – Packard, Andrew – Frenklach, Michael: Representing Model Discrepancy in Bound-to-Bound Data Collaboration. Siam-asa Journal on Uncertainty Quantification, č. 1, zv. 9, str. 231-259, 2021.
  • Petsagkourakis, P. – Galvanin, F.: Safe model-based design of experiments using Gaussian processes. Computers and Chemical Engineering, zv. 151, str. 107339, 2021.
  • Ronzani, Daniele – Gillis, Joris – Pipeleers, Goele – Swevers, Jan: ECOset-ILC: an Iterative Learning Control Approach with Set-membership Uncertainty. V 2022 IEEE 17th International Conference on Advanced Motion Control (AMC), str. 68-75, 2022.
  • Liu, Xin – Wang, Chen – Han, Guangjie: LPV Time-Delay System Identification and Its Application to the Centralized Heat-Supply System. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, zv. 71, str. 3507111, 2022.
  • Liu, Z. – Wang, Z. – Wang, Y. – Ji, Z.: Optimal Zonotopic Kalman Filter-based State Estimation and Fault-diagnosis Algorithm for Linear Discrete-time System with Time Delay. International Journal of Control, Automation and Systems, 2022.
  • Yadav, Swati – Angira, Rakesh: Parameter estimation in non-linear chemical processes: an opposite point-based differential evolution (OPDE) approach. Chemical Product and Process Modeling, 2023.
S. Subramanian – S. Lucia – S. A. Baradaran Birjandi – R. Paulen – S. Engell: A Combined Multi-stage and Tube-based MPC Scheme for Constrained Linear Systems. V Preprints of the 6th IFAC Conference on Nonlinear Model Predictive Control, Madison, Wisconsin, USA, str. 577–582, 2018.
  • Počet citácií       4
  • Hanema,J. – Lazar,M. – Tóth,R.: Heterogeneously parameterized tube model predictive control for LPV systems. Automatica, zv. 111, 2020.
  • Peschke, Tobias – Görges, Daniel: Sequential Multi-Stage and Tube-based Robust MPC for Constrained Linear Systems with Multiplicative Uncertainty. V 2021 American Control Conference (ACC), str. 3378-3383, 2021.
  • Jeong, Changhun – Furenes, Beathe – Sharma, Roshan: Implementation of simplified sequential stochastic model predictive control for operation of hydropower system under uncertainty. Computers & Chemical Engineering, č. 108409, zv. 179, str. 108409, 2023.
  • An, Zhuoer – Liu, Xinghua – Wang, Peng: Robust Tube MPC with Multi-step Tracking for Uncertain Constrained Linear Systems. V 2023 IEEE 18th Conference on Industrial Electronics and Applications (ICIEA), str. 856-861, 2023.
U. Sharma – S. Thangavel – A. R. Gottu Mukkula – R. Paulen: Effective Recursive Parallelotopic Bounding for Robust Output-Feedback Control. V 18th IFAC Symposium on System Identification, IFAC, str. 1032–1035, 2018.
  • Počet citácií       8
  • L. {Jirsa} – A. {Quinn} – L. K. {Pavelková}: Bayesian Filtering for States Uniformly Distributed on a Parallelotopic Support. V 2019 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT), str. 1-6, 2019.
  • E.K. Kostousova: On polyhedral estimation of reachable sets in the “extended” space for discrete-time systems with uncertain matrices and integral constraints. Trudy Instituta Matematiki i Mekhaniki URO RAN, č. 1, zv. 26, str. 141–155, 2020.
  • Kostousova, E. K.: On Polyhedral Estimation of Reachable Sets in the “Extended” Space for Discrete-Time Systems with Uncertain Matrices and Integral Constraints. Proceedings of the Steklov Institute of Mathematics, č. S140, zv. 313, str. S154, 2021.
  • Wang,Z. – Li,X. – Wang,Y.: Set-membership filtering based Bi-directional DC-DC converter state estimation algorithm for lithium battery formation. V Proceeding - 2021 China Automation Congress, CAC 2021, str. 3660-3665, 2021.
  • Zhang, Shuai – Wang, Zi-Yun – Wang, Yan – Ji, Zhi-Cheng: A Novel Set-valued Observer Based State Estimation Algorithm for Nonlinear Systems. INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, č. 4, zv. 20, str. 1266-1274, 2022.
  • Wang,Z. -. – Li,X. – Wang,Y. – Ji,Z. -.: Hyperparallel space set-membership filtering based state estimation algorithm for nonlinear system. Kongzhi yu Juece/Control and Decision, č. 9, zv. 37, str. 2287-2295, 2022.
  • Wang,Z. -. – Cheng,L. – Wang,Y. – Ji,Z. -.: Orthometric hyperparallel spatial directional expansion filtering based fault diagnosis method. Kongzhi yu Juece/Control and Decision, č. 12, zv. 37, str. 3223-3232, 2022.
  • Pavelková, Lenka Kuklišová: Bayesian State Estimation Using Constrained Zonotopes. V Proceedings of the International Conference on Informatics in Control, Automation and Robotics, str. 189 – 194, 2023.
A. Sharma – R. Valo – M. KalúzR. PaulenM. Fikar: Experimental validation and comparison of time-optimal and industrial strategy for membrane separation process. V Preprints of the 9th Vienna International Conference on Mathematical Modelling, Vienna, Austria, February 21-23, 2018, str. 869–874, 2018.
  • Počet citácií       2
  • Melnikova, Elena – Bogdanova, Ekaterina – Paveleva, Daria: The Research of Whey Permeate Mineral Profile at Different Stages of Membrane Filtration. Potravinarstvo Slovak Journal of Food Sciences, zv. 17, str. 748 – 758, 2023.
  • Melnikova, Elena Ivanovna – Bogdanova, Ekaterina Viktorovna – Paveleva, Daria Anatolyevna: Whey Permeate Mineral Profile at Various Stages of Membrane Filtration; [مشخصات مواد معدنی تراویده آب پنیر در مراحل گوناگون تصفیه غشایی]. Applied Food Biotechnology, č. 4, zv. 10, str. 223 – 231, 2023.
A. R. Gottu Mukkula – R. Paulen: Robust model-based design of experiments for guaranteed parameter estimation. Editor(i): Antonio Espuña, Moisès Graells and Luis Puigjaner, V 27th European Symposium on Computer-Aided Process Engineering, Elsevier, str. 1639–1644, 2017.
  • Počet citácií       2
  • Walz, Olga – Djelassi, Hatim – Mitsos, Alexander: Optimal experimental design for optimal process design: A trilevel optimization formulation. Aiche Journal, č. 1, zv. 66, str. e16788, 2020.
  • Duarte, Belmiro P. M. – Atkinson, Anthony C. – Granjo, Jose F. O. – Oliveira, Nuno M. C.: A model-based framework assisting the design of vapor-liquid equilibrium experimental plans. Computers & Chemical Engineering, zv. 145, str. 107168, 2021.
S. Wenzel – R. Paulen – B. Beisheim – S. Krämer – S. Engell: Market-Based Coordination of Shared Resources in Cyber-physical Production Sites. Chemie Ingenieur Technik, č. 5, zv. 89, str. 636–644, 2017.
  • Počet citácií       1
  • Galembeck, Fernando: Synergy in food, energy and advanced materials production from biomass. Pure and Applied Chemistry, č. 1, zv. 90, str. 109-119, 2018.
A. R. Gottu Mukkula – R. Paulen: Model-based design of optimal experiments for nonlinear systems in the context of guaranteed parameter estimation. Computers & Chemical Engineering, zv. 99, str. 198–213, 2017.
  • Počet citácií       28
  • Budman,H. M. – Hille,R.: Simultaneous identification and optimization of biochemical processes under model-plant mismatch using output uncertainty bounds. Computers and Chemical Engineering, zv. 113, str. 125-138, 2018.
  • Walz, Olga – Djelassi, Hatim – Caspari, Adrian – Mitsos, Alexander: Bounded-error optimal experimental design via global solution of constrained min-max program. Computers & Chemical Engineering, zv. 111, str. 92-101, 2018.
  • Rubin Hille: Run-to-Run Optimization of Biochemical Batch Processes in the Presence of Model-Plant Mismatch, University of Waterloo, University of Waterloo, 2018.
  • Quaglio,M. – Pankajakshan,A. – Galvanin,F.: Experimentally Driven Guaranteed Parameter Estimation: a Way to Speed up Model-Based Design of Experiments Techniques, zv. 43, 2018.
  • Jung,F. – Mhamdi,A. – Mitsos,A.: Constraints for Set-Membership Parameter Estimation, zv. 44, 2018.
  • Remli, Muhammad Akmal – Mohamad, Mohd Saberi – Deris, Safaai – Samah, Azurah A. – Omatu, Sigeru – Manuel Corchado, Juan: Cooperative enhanced scatter search with opposition-based learning schemes for parameter estimation in high dimensional kinetic models of biological systems. Expert Systems with Applications, zv. 116, str. 131-146, 2019.
  • Kusumo,K. P. – Kuriyan,K. – Vaidyaraman,S. – García-Muñoz,S. – Shah,N. – Chachuat,B.: Risk mitigation in model-based experiment design: A continuous-effort approach to optimal campaigns. Computers and Chemical Engineering, zv. 159, str. 107680, 2022.
  • Horn,G. – Gillis,J. – Andersson,J. A. E. – Diehl,M. – Rawlings,J. B.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation, č. 1, zv. 11, 2019.
  • Jung, Falco – Caspari, Adrian – Mhamdi, Adel – Mitsos, Alexander: Set-Membership Parameter Estimation: Improved Understanding of Microgel Polymerization. Ifac Papersonline, č. 1, zv. 52, str. 580-585, 2019.
  • Joy, Preet – Djelassi, Hatim – Mhamdi, Adel – Mitsos, Alexander: Optimization-based global structural identifiability. Computers & Chemical Engineering, zv. 128, str. 417-420, 2019.
  • Jung, Falco – Janssen, Franca A. L. – Ksiazkiewicz, Agnieszka – Caspari, Adrian – Mhamdi, Adel – Pich, Andrij – Mitsos, Alexander: Identifiability Analysis and Parameter Estimation of Microgel Synthesis: A Set-Membership Approach. Industrial & Engineering Chemistry Research, č. 30, SI, zv. 58, str. 13675-13685, 2019.
  • Jauberthie,C. – Denis-Vidal,L. – Kieffer,M.: Optimal experiment design for bounded-error estimation of nonlinear models. V Proceedings of the IEEE Conference on Decision and Control, str. 4147-4154, 2019.
  • Walz, Olga – Djelassi, Hatim – Mitsos, Alexander: Optimal experimental design for optimal process design: A trilevel optimization formulation. Aiche Journal, č. 1, zv. 66, str. e16788, 2020.
  • Bernard, A. – Besombes, G. – Dall’Olio, L. – Le Duigou, J. – Belkadi, F.: Knowledge-based platform for traceability and simulation monitoring applied to design of experiments process: an open source architecture. Journal of Engineering Design, č. 8-9, zv. 30, str. 311-335, 2019.
  • Wang, Ke – Yue, Hong – Yu, Hui: Optimal Input Design for Reduction of Parameter Correlations. V 2018 24th IEEE International Conference on Automation and Computing (icac' 18), str. 406-411, 2018.
  • Krichen, E. – Rapaport, A. – Fouilland, E.: About frame estimation of growth functions and robust prediction in bioprocess modeling. Journal of Process Control, zv. 85, str. 121-135, 2020.
  • Novara, C. – Karimshoushtari, M.: Design of experiments for nonlinear system identification: A set membership approach. Automatica, č. 109036, zv. 119, 2020.
  • Tobias Paul Ring: Effiziente Unsicherheitsquantifizierung in der Akustik mittels eines Multi-Modell-Verfahrens, Shaker (Verlag), Düren, zv. 2020, 2020.
  • Kunna, M.A. – Kadir, T.A.A. – Remli, M.A. – Ali, N.M. – Moorthy, K. – Muhammad, N.: An enhanced segment particle swarm optimization algorithm for kinetic parameters estimation of the main metabolic model of Escherichia coli. Processes, č. 8, zv. 8, str. 963, 2020.
  • Zhao, X. – Mu, X.: Evaluation method for storage life of computing devices under zero-failure data [无失效数据下计算装置贮存寿命评估方法]. Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics, č. 1, zv. 43, str. 272-278, 2021.
  • Caspari, A. – Djelassi, H. – Mhamdi, A. – Biegler, L.T. – Mitsos, A.: Semi-infinite programming yields optimal disturbance model for offset-free nonlinear model predictive control. Journal of Process Control, zv. 101, str. 35-51, 2021.
  • Petsagkourakis, P. – Galvanin, F.: Safe model-based design of experiments using Gaussian processes. Computers and Chemical Engineering, zv. 151, str. 107339, 2021.
  • Ronzani, Daniele – Gillis, Joris – Pipeleers, Goele – Swevers, Jan: ECOset-ILC: an Iterative Learning Control Approach with Set-membership Uncertainty. V 2022 IEEE 17th International Conference on Advanced Motion Control (AMC), str. 68-75, 2022.
  • Lam,N. N. – Docherty,P. D. – Murray,R.: Practical identifiability of parametrised models: A review of benefits and limitations of various approaches. Mathematics and Computers in Simulation, zv. 199, str. 202-216, 2022.
  • Kusumo,K. P. – Kuriyan,K. – Vaidyaraman,S. – García Muñoz,S. – Shah,N. – Chachuat,B.: Probabilistic framework for optimal experimental campaigns in the presence of operational constraints. Reaction Chemistry and Engineering, č. 11, zv. 7, str. 2359-2374, 2022.
  • Quilló,G. L. – Bhonsale,S. – Collas,A. – Xiouras,C. – Van Impe,J. F. M.: Iterative model-based optimal experimental design for mixture-process variable models to predict solubility. Chemical Engineering Research and Design, zv. 189, str. 768-780, 2023.
  • Casas-Orozco, Daniel – Laky, Daniel – Mackey, Jaron – Reklaitis, Gintaras – Nagy, Zoltan: Reaction kinetics determination and uncertainty analysis for the synthesis of the cancer drug lomustine. Chemical Engineering Science, zv. 275, str. 118591, 2023.
  • Lei, Chon Lok – Clerx, Michael – Gavaghan, David J. – Mirams, Gary R.: Model-driven optimal experimental design for calibrating cardiac electrophysiology models. Computer Methods and Programs in Biomedicine, zv. 240, str. 107690, 2023.
S. Wenzel – R. Paulen – B. Beisheim – S. Krämer – S. Engell: Adaptive Pricing for Optimal Resource Allocation in Industrial Production Sites. V Preprints of the 20th IFAC World Congress, Toulouse, France, zv. 20, str. 12957–12962, 2017.
  • Počet citácií       2
  • Klychova, Guzaliya – Zakirova, Alsou – Safiullin, Ilnur – Zakirov, Zufar – Khusainov, Shaukat – Zakharova, Galina: Rational placement of grain production - the basis for ensuring food security. E3S Web Conf., zv. 175, str. 08013, 2020.
  • Holters,L. – Bahl,B. – Hennen,M. – Bardow,A.: Playing stackelberg games for minimal cost for production and utilities. V ECOS 2018 - Proceedings of the 31st International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, 2018.
M. Jelemenský – M. FikarR. Paulen: Time-Optimal Operation of Membrane Processes in the Presence of Fouling with Set-Membership Parameter Estimation. V Preprints of the 20th IFAC World Congress, Toulouse, France, zv. 20, str. 4776–4781, 2017.
  • Počet citácií       1
  • Ji,Z. – Wang,Z. – Liu,Z. – Xu,G.: Weight Value Ellipsoid Based Estimation Algorithm with Finite Data Window. V Chinese Control Conference, CCC, str. 1632-1636, 2018.
A. R. Gottu Mukkula – R. Paulen: Model-Based Optimal Experiment Design for Nonlinear Parameter Estimation Using Exact Confidence Regions. V Preprints of the 20th IFAC World Congress, Toulouse, France, zv. 20, str. 14324–14329, 2017.
  • Počet citácií       2
  • Wang, K. – Yue, H. – Yu, H.: Optimal input design for reduction of parameter correlations. V ICAC 2018 - 2018 24th IEEE International Conference on Automation and Computing: Improving Productivity through Automation and Computing, 2018.
  • Bortz, M. – Asprion, N. – Oseledets, I. – Ryzhakov, G. – Karpov, G. – Vanaret, C. – Schwientek, J. – Seufert, P.: Two-phase approaches to optimal model-based design of experiments: how many experiments and which ones?. Computers and Chemical Engineering, zv. 146, str. 107218, 2021.
A. Sharma – M. Jelemenský – R. PaulenM. Fikar: Modeling and optimal operation of batch closed-loop diafiltration processes. Chemical Engineering Research and Design, zv. 122, str. 198–210, 2017.
  • Počet citácií       5
  • Wang,M. – Admassu,H. – Gasmalla,M. A. A. – Hua,X. – Yang,R.: Preparation of high-purity lactulose through efficient recycling of catalyst sodium aluminate and nanofiltration: a pilot-scale purification. Journal of the science of food and agriculture, č. 14, zv. 98, str. 5352-5360, 2018.
  • Al-Obaidi,M. A. – Alsarayreh,A. A. – Mujtaba,I. M. – Patel,R. – Al-Hroub,A. M.: Performance evaluation of reverse osmosis brackish water desalination plant with different recycled ratios of retentate. Computers and Chemical Engineering, zv. 135, str. 106729, 2020.
  • Al-Hroub, A.M. – Al-Obaidi, M.A. – Alsarayreh, A.A. – Patel, R. – Mujtaba, I.M.: Performance Evaluation of Reverse Osmosis Brackish Water Desalination Plant with Different Recycled Ratios of Retentate. Computer Aided Chemical Engineering, zv. 46, str. 181-186, 2019.
  • Andrade, Thalles Allan – Errico, Massimiliano – Christensen, Knud Villy: Implementation of Biodiesel Production Process Using Enzyme-Catalyzed Routes. V Process Systems Engineering for Biofuels Development, Editor(i): A. Bonilla‐Petriciolet and G.P. Rangaiah, Kapitola: 8. John Wiley & Sons, Ltd, str. 191-220, 2020.
  • El-Ghzizel, Soufian – Zeggar, Hajar – Elazhar, Fatima – Tahaikt, Mustapha – Hafsi, Mahmoud – Elmidaoui, Azzedine – Taky, Mohamed: Brine recycling impact on nitrate removal and electrochemical disinfection performances: a case study of Sidi Taibi desalination plant. Desalination and Water Treatment, zv. 240, str. 63-74, 2021.
S. Thangavel – S. Lucia – R. Paulen – S. Engell: Robust Nonlinear Model Predictive Control with Reduction of Uncertainty via Dual Control. Editor(i): M. Fikar and M. Kvasnica, V Proceedings of the 21st International Conference on Process Control, Slovak Chemical Library, Štrbské Pleso, Slovakia, str. 48–53, 2017.
  • Počet citácií       2
  • Nogueira,I. B. R. – Fontes,R. M. – Ribeiro,A. M. – Pontes,K. V. – Embiruçu,M. – Martins,M. A. F.: A robustly model predictive control strategy applied in the control of a simulated industrial polyethylene polymerization process. Computers and Chemical Engineering, zv. 133, str. 106664, 2020.
  • Barcelos, L. – Oliveira, R. – Possas, R. – Ott, L. – Ramos, F.: DISCO: Double Likelihood-free Inference Stochastic Control. V Proceedings - IEEE International Conference on Robotics and Automation, str. 10969-10975, 2020.
F. Shamim – R. Hernández – R. Paulen – S. Engell: A hierarchical coordination approach to the optimal operation of a sugar crystallization process. Editor(i): Zdravko Kravanja, Miloš Bogataj, V 26th European Symposium on Computer Aided Process Engineering, Elsevier B.V, Portorož, Slovenia, zv. 26, str. 703–708, 2016.
  • Počet citácií       3
  • de Castro, Bruno J. C. – Marciniuk Junior, Meloci – Giulietti, Marco – Bernardo, Andre: SUCROSE CRYSTALLIZATION: MODELING AND EVALUATION OF PRODUCTION RESPONSES TO TYPICAL PROCESS FLUCTUATIONS. Brazilian Journal of Chemical Engineering, č. 3, zv. 36, str. 1237-1253, 2019.
  • Pohorilyi, Taras: Modeling of non-stationary processes heat and mass transfer according to the cellular model of sucrose mass crystallization. Ukrainian Food Journal, č. 1, zv. 12, 2023.
  • Gorodecky, Vladimir – Semenikhin, Semen – Daisheva, Nailya – Kotlyarevskaya, Natalya – Fabritskaya, Alla: Identification of influential patterns of chemical treatment of sugar production thick juice and remelt syrups on the beet sugar quality. V BIO Web of Conferences, 2022.
S. Wenzel – R. Paulen – S. Krämer – B. Beisheim – S. Engell: Price Adjustment in Price‐based Coordination Using Quadratic Approximation. Editor(i): Zdravko Kravanja, Miloš Bogataj, V 26th European Symposium on Computer Aided Process Engineering, Elsevier B.V, Portorož, Slovenia, zv. 26, str. 193–198, 2016.
  • Počet citácií       2
  • Predrag Milosavljevic: Real-Time Optimization of Interconnected Systems via Modifier Adaptation, with Application to Gas-Compressor Stations, ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE, 2018.
  • Schneider, Rene – Milosavljevic, Predrag – Bonvin, Dominique: Distributed modifier-adaptation schemes for the real-time optimisation of uncertain interconnected systems. International Journal of Control, č. 5, zv. 92, str. 1123-1136, 2019.
S. Wenzel – R. Paulen – S. Krämer – B. Beisheim – S. Engell: Shared Resource Allocation in an Integrated Petrochemical Site by Price‐based Coordination Using Quadratic Approximation. V European Control Conference 2016, Aalborg, Denmark, str. 1045–1050, 2016.
  • Počet citácií       4
  • Estellés-Miguel,S. – Maheut,J. – Rius-Sorolla,G. – Garcia-Sabater,J. P.: Coordination mechanisms with mathematical programming models for decentralized decision-making: a literature review. Central European Journal of Operations Research, 2018.
  • Carlo Valli: Distributed Optimization of a Gas-LiftedWells Network using Transient Measurements, Politecnico di Milano, 2019.
  • Zhang,Q. – Allman,A.: Distributed cooperative industrial demand response. Journal of Process Control, zv. 86, str. 81-93, 2020.
  • Achour, Saadi – Rahmoune, Abdelaziz – Ouchenane, Djamel – Alharbi, Asma – Boulaaras, Salah: Initialization of the difference of convex functions optimization algorithm for nonconvex quadratic problems. Filomat, č. 3, zv. 38, str. 1069 – 1083, 2024.
R. Paulen – S. Nazari – S. Shahidi – C. Sonntag – S. Engell: Primal and Dual Decomposition for Distributed MPC – Theory, Implementation, and Comparison in a SoS Simulation Framework. V 24th Mediterranean Conference on Control and Automation (MED'16), IEEE, Athens, Greece, zv. 24, str. 286–291, 2016.
  • Počet citácií       1
  • Nogueira, R.A. – Bourdais, R. – Guéguen, H.: Detection and Mitigation of Corrupted Information in Distributed Model Predictive Control Based on Resource Allocation. V Conference on Control and Fault-Tolerant Systems, SysTol, str. 329-334, 2021.
A. R. Gottu Mukkula – R. Paulen: Optimal Design of Dynamic Experiments for Guaranteed Parameter Estimation. V American Control Conference, Boston, Massachusetts, USA, str. 1826–1831, 2016.
  • Počet citácií       2
  • Walz, Olga – Djelassi, Hatim – Caspari, Adrian – Mitsos, Alexander: Bounded-error optimal experimental design via global solution of constrained min-max program. Computers & Chemical Engineering, zv. 111, str. 92-101, 2018.
  • Abdelsalam, Y. – Subramanian, S. – Aboelnour, M. – Engell, S.: Adaptive tube-enhanced multi-stage nonlinear model predictive control. V IFAC-PapersOnLine, str. 212-218, 2021.
A. R. Gottu Mukkula – R. Paulen: Optimal dynamic experiment design for guaranteed parameter estimation. Editor(i): Zdravko Kravanja, Miloš Bogataj, V 26th European Symposium on Computer Aided Process Engineering, Elsevier B.V, Portorož, Slovenia, zv. 26, str. 757–762, 2016.
  • Počet citácií       1
  • Walz, Olga – Djelassi, Hatim – Caspari, Adrian – Mitsos, Alexander: Bounded-error optimal experimental design via global solution of constrained min-max program. Computers & Chemical Engineering, zv. 111, str. 92-101, 2018.
S. Wenzel – R. Paulen – G. Stojanovski – S. Krämer – B. Beisheim – S. Engell: Optimal resource allocation in industrial complexes by distributed optimization and dynamic pricing. at - Automatisierungstechnik, č. 6, zv. 64, str. 428–442, 2016.
  • Počet citácií       14
  • Garcia-Sabater,J. P. – Estellés-Miguel,S. – Maheut,J. – Rius-Sorolla,G.: Coordination mechanisms with mathematical programming models for decentralized decision-making: a literature review. Central European Journal of Operations Research, 2018.
  • Marchetti, Alejandro G. – Francois, Gregory – Faulwasser, Timm – Bonvin, Dominique: Modifier Adaptation for Real-Time Optimization-Methods and Applications. Processes, č. 4, zv. 4, 2016.
  • Rius-Sorolla, Gregorio – Maheut, Julien – Estelles-Miguel, Sofia – Pedro Garcia-Sabater, Jose: Protocol: Systematic Literature Review on coordination mechanisms for the mathematical programming models in production planning with decentralized decision making. Wpom-working Papers on Operations Management, č. 2, zv. 8, str. 22-43, 2017.
  • Skogestad, Sigurd – Dirza, Risvan – Krishnamoorthy, Dinesh: Optimal Resource Allocation using Distributed Feedback-based Real-time Optimization. Ifac Papersonline, č. 3, zv. 54, str. 706-711, 2021.
  • Krishnamoorthy, D.: A distributed feedback-based online process optimization framework for optimal resource sharing. Journal of Process Control, zv. 97, str. 72-83, 2021.
  • Dirza, R. – Skogestad, S. – Krishnamoorthy, D.: Real-time optimal resource allocation and constraint negotiation applied to a subsea oil production network. V Proceedings - SPE Annual Technical Conference and Exhibition, str. SPE-206102-MS, 2021.
  • Leenders, L. – Hagedorn, D.F. – Djelassi, H. – Bardow, A. – Mitsos, A.: Bilevel optimization for joint scheduling of production and energy systems. Optimization and Engineering, 2022.
  • Dirza,R. – Matias,J. – Skogestad,S. – Krishnamoorthy,D.: Experimental validation of distributed feedback-based real-time optimization in a gas-lifted oil well rig. Control Engineering Practice, zv. 126, str. 105253, 2022.
  • Ramos-Teodoro,J. – Rodríguez,F.: Distributed energy production, control and management: a review of terminology and common approaches. RIAI - Revista Iberoamericana de Automatica e Informatica Industrial, č. 3, zv. 19, str. 233-253, 2022.
  • Dirza, R. – Krishnamoorthy, D. – Skogestad, S.: Primal-dual Feedback-optimizing Control with Direct Constraint Control. V Computer Aided Chemical Engineering, str. 1153-1158, 2022.
  • Dirza, R. – Skogestad, S.: Online Feedback-based Optimization with Multi-input Direct Constraint Control. V IFAC-PapersOnLine, str. 149-154, 2022.
  • Dirza, Risvan – Rizwan, Md – Skogestad, Sigurd – Krishnamoorthy, Dinesh: Real-time Optimal Resource Allocation using Online Primal Decomposition. Ifac Papersonline, č. 21, zv. 55, str. 31-36, 2022.
  • Yu, Ji\\\'an – Chen, Zhe: Study of Enterprise Resource Optimization Scheme from the Perspective of Knapsack Problems. Applied Mathematics and Nonlinear Sciences, 2023.
  • Krishnamoorthy, Dinesh – Kungurtsev, Vyacheslav: A Sensitivity Assisted Alternating Directions Method of Multipliers for Distributed Optimization. V 2022 IEEE 61st Conference on Decision and Control (CDC), str. 295-300, 2022.
R. Paulen – M. Villanueva – B. Chachuat: Guaranteed parameter estimation of non-linear dynamic systems using high-order bounding techniques with domain and CPU-time reduction strategies. IMA Journal of Mathematical Control and Information, č. 3, zv. 33, str. 563–587, 2016.
  • Počet citácií       12
  • Van Impe, J. – Telen, D. – Nimmegeers, P.: A sampling-based stochastic optimal experiment design formulation with application to the Williams-Otto reactor. IFAC-PapersOnLine, č. 1, zv. 50, str. 8716-8721, 2017.
  • Walz, Olga – Djelassi, Hatim – Caspari, Adrian – Mitsos, Alexander: Bounded-error optimal experimental design via global solution of constrained min-max program. Computers & Chemical Engineering, zv. 111, str. 92-101, 2018.
  • Jung,F. – Mhamdi,A. – Mitsos,A.: Constraints for Set-Membership Parameter Estimation, zv. 44, 2018.
  • Chai,W. – Ji,H.: Set Membership Parameter Estimation for Nonlinear Systems Using Isomap. Dianzi Keji Daxue Xuebao/Journal of the University of Electronic Science and Technology of China, č. 2, zv. 47, str. 203-208, 2018.
  • Jung, Falco – Caspari, Adrian – Mhamdi, Adel – Mitsos, Alexander: Set-Membership Parameter Estimation: Improved Understanding of Microgel Polymerization. Ifac Papersonline, č. 1, zv. 52, str. 580-585, 2019.
  • Jung, Falco – Janssen, Franca A. L. – Ksiazkiewicz, Agnieszka – Caspari, Adrian – Mhamdi, Adel – Pich, Andrij – Mitsos, Alexander: Identifiability Analysis and Parameter Estimation of Microgel Synthesis: A Set-Membership Approach. Industrial & Engineering Chemistry Research, č. 30, SI, zv. 58, str. 13675-13685, 2019.
  • Walz, Olga – Djelassi, Hatim – Mitsos, Alexander: Optimal experimental design for optimal process design: A trilevel optimization formulation. Aiche Journal, č. 1, zv. 66, str. e16788, 2020.
  • Merhy, D. – Stoica Maniu, C. – Alamo, T. – Camacho, E.F. – Ben Chabane, S. – Chevet, T. – Makarov, M. – Hinostroza, I.: Guaranteed set-membership state estimation of an octorotor\\\'s position for radar applications. International Journal of Control, č. 11, zv. 93, str. 2760-2770, 2020.
  • Merhy, D. – Stoica Maniu, C. – Alamo, T. – Camacho, E.F. – Ben Chabane, S. – Chevet, T. – Makarov, M. – Hinostroza, I.: Guaranteed set-membership state estimation of an octorotor's position for radar applications. International Journal of Control, č. 11, zv. 93, str. 2760-2770, 2020.
  • Ballet, Gabriel – dit Sandretto, Julien Alexandre – Pribourg, Laurent – Fnadi, Mohamed: Guaranteed Identification of Viscous Friction for a Nonlinear Inverted Pendulum Through Interval Analysis and Set Inversion. V 2021 American Control Conference (ACC), str. 3920-3926, 2021.
  • Ronzani, Daniele – Gillis, Joris – Pipeleers, Goele – Swevers, Jan: ECOset-ILC: an Iterative Learning Control Approach with Set-membership Uncertainty. V 2022 IEEE 17th International Conference on Advanced Motion Control (AMC), str. 68-75, 2022.
  • El Wajeh, Mohammad – Jung, Falco – Bongartz, Dominik – Kappatou, Chrysoula Dimitra – Laleh, Narmin Ghaffari – Mitsos, Alexander – Kather, Jakob Nikolas: Can the Kuznetsov Model Replicate and Predict Cancer Growth in Humans?. Bulletin of Mathematical Biology, č. 11, zv. 84, str. 130, 2022.
M. Jelemenský – D. Pakšiová – R. Paulen – M. A. Latifi – M. Fikar: Combined Estimation and Optimal Control of Batch Membrane Processes. Processes, č. 4, zv. 4, 2016.
  • Počet citácií       3
  • Bonvin, Dominique: Special Issue. Processes, č. 2, zv. 5, 2017.
  • Qi,B. – Liu,B. – Zhang,S. – Liang,E. – Nie,Y. – Yuan,Z.: Mathematical Modeling for the Industrial 2-Mercaptobenzothiazole Batch Production Process. ACS Omega, č. 8, zv. 7, str. 6963-6977, 2021.
  • Liang, Enzhi – Zhang, Song – Liu, Bin – Qi, Bujin – Nie, Yanpei – Yuan, Zhihong: Mathematical Modeling for the Industrial 2-Mercaptobenzothiazole Batch Production Process. ACS Omega, č. 8, zv. 7, str. 6963-6977, 2022.
M. Jelemenský – A. Sharma – R. PaulenM. Fikar: Time-optimal control of diafiltration processes in the presence of membrane fouling. Computers & Chemical Engineering, zv. 91, str. 343–351, 2016.
  • Počet citácií       12
  • Oravec, Juraj – Bakosova, Monika – Trafczynski, Marian – Vasickaninova, Anna – Meszaros, Alajos – Markowski, Mariusz: Robust model predictive control and PID control of shell-and-tube heat exchangers. Energy, zv. 159, str. 1-10, 2018.
  • Oravec,J. – Trafczynski,M. – Bakošová,M. – Markowski,M. – Mészáros,A. – Urbaniec,K.: Robust model predictive control of heat exchanger network in the presence of fouling, zv. 61, 2017.
  • Kulesha,O. – Maletskyi,Z. – Ratnaweera,H.: State-of-the-art of membrane flux enhancement in membrane bioreactor. Cogent Engineering, č. 1, zv. 5, str. 1-30, 2018.
  • Robles, Angel – Victoria Ruano, Maria – Charfi, Amine – Lesage, Geoffroy – Heran, Marc – Harmand, Jerome – Seco, Aurora – Steyer, Jean-Philippe – Batstone, Damien J. – Kim, Jeonghwan – Ferrer, Jose: A review on anaerobic membrane bioreactors (AnMBRs) focused on modelling and control aspects. Bioresource Technology, zv. 270, str. 612-626, 2018.
  • Religa, Pawel – Kazmierczak, Bernadetta – Wojtkowska, Malgorzata – Rogos, Elzbieta: The influence of the nanofiltration method on the retentate composition after simulated chromium tannery wastewater concentration. Desalination and Water Treatment, zv. 128, str. 187-192, 2018.
  • Rehman, Waheed Ur – Muhammad, Amir – Khan, Qaisar Ali – Younas, Mohammad – Rezakazemi, Mashallah: Pomegranate juice concentration using osmotic distillation with membrane contactor. Separation and Purification Technology, zv. 224, str. 481-489, 2019.
  • Zhang, Bopeng – Kotsalis, Georgios – Khan, Jahanzeb – Xiong, Zhaoyang – Igou, Thomas – Lan, Guanghui – Chen, Yongsheng: Backwash sequence optimization of a pilot-scale ultrafiltration membrane system using data-driven modeling for parameter forecasting. Journal of Membrane Science, zv. 612, str. 118464, 2020.
  • Gao, Y. – Yang, J. – Song, X. – Shen, D. – Wang, W. – Liu, K. – Jiang, J.: Experimental Study on Membrane Fouling and Cleaning in Hydrolytic Acidification -Membrane - Sequencing Batch Reactors Process. V IOP Conference Series: Earth and Environmental Science, str. 012102, 2020.
  • Kuhn, M. – Briesen, H.: Optimizing the axial resistance profile of submerged hollow fiber membranes. Processes, č. 1, zv. 9, str. 1-13, 2021.
  • Gao, Yulan – Yang, Jie – Song, Xinwei – Shen, Dongmei – Wang, Wanfen – Zhang, Weimin – Jiang, Jichao: An experimental study on the use of a sequencing-batch membrane bioreactor (SBMBR) for the treatment of mixed municipal wastewater. Water Science and Technology, č. 6, zv. 83, str. 1459-1469, 2021.
  • Qalyoubi, L. – Al-Othman, A. – Al-Asheh, S.: Removal of ciprofloxacin antibiotic pollutants from wastewater using nano-composite adsorptive membranes. Environmental Research, č. 114182, zv. 215, 2022.
  • Nawaz,A. – Singh Arora,A. – Yun,C. M. – Lee,J. J. – Lee,M.: Development of Smart AnAmmOx System and Its Agile Operation and Decision Support for Pilot-Scale WWTP, str. 423-454, 2021.
A. Sharma – M. Jelemenský – R. PaulenM. Fikar: Estimation of membrane fouling parameters for concentrating lactose using nanofiltration. Editor(i): Zdravko Kravanja, Miloš Bogataj, V 26th European Symposium on Computer Aided Process Engineering, Elsevier B.V, Portorož, Slovenia, zv. 26, str. 151–156, 2016.
  • Počet citácií       4
  • Jeong,S. – Kim,D. – Lee,J. H.: Modeling and Simulation of Autothermal Reforming Reactor of Diesel over Ni-based Catalyst in Solid Oxide Fuel Cell based Auxiliary Power Unit System, zv. 44, 2018.
  • McCarthy, W.P. – Blais, H.N. – O'Callaghan, T.F. – Hossain, M. – Moloney, M. – Danaher, M. – O'Connor, C. – Tobin, J.T.: Application of nanofiltration for the removal of chlorate from skim milk. International Dairy Journal, zv. 128, str. 105321, 2022.
  • Park, Jungsu – Cayetano, Roent Dune A. – Kwon, Yeelyung – Kim, Gi-Beom – Jo, Yura – Kim, Sang-Hyoun: Improved sludge anaerobic digestion capacity by dynamic membrane and alkaline-thermal pretreatment: Long-term continuous operation and techno-economic analysis. Chemical Engineering Journal, zv. 474, str. 145735, 2023.
  • Abuhantash, F. – Hegab, H.M. – Aljundi, I.H. – Hasan, S.W.: Synergistic design of polylactic acid/functionalized multi-walled carbon nanotubes composite membrane for enhanced oil-water separation. Journal of Environmental Chemical Engineering, č. 6, zv. 11, 2023.
M. Jelemenský – M. KlaučoR. Paulen – J. Lauwers – F. Logist – J. Van Impe – M. Fikar: Time-Optimal Control and Parameter Estimation of Diafiltration Processes in the Presence of Membrane Fouling. V 11th IFAC Symposium on Dynamics and Control of Process Systems, including Biosystems, zv. 11, str. 242–247, 2016.
  • Počet citácií       2
  • Krewer, U. – Scholl, S. – Rehbein, M. – Xie, X. – Schenkendorf, R.: The impact of global sensitivities and design measures in model-based optimal experimental design. Processes, č. 4, zv. 6, 2018.
  • Nawaz, Alam – Saxena, Nikita – Arora, Amarpreet Singh – Yun, Choa Mun – Lee, Moonyong: Auto-Tuning of Identified Highly Sensitive Parameters for ANAMMOX System: Advanced Modeling Approach. IEEE Transactions on Industrial Informatics, č. 11, zv. 17, str. 7238-7245, 2021.
  • Počet citácií       13
  • Rincón Moruno, Sergi: Vertical trajectory optimisation using off-line look-up tables, Universitat Politecnica de Catalunya, 2017.
  • Hammad, Ahmed W. A. – Rey, David – Bu-Qammaz, Amani – Grzybowska, Hanna – Akbarnezhad, Ali: Mathematical optimization in enhancing the sustainability of aircraft trajectory: A review. International Journal of Sustainable Transportation, č. 6, zv. 14, str. 413-436, 2020.
  • Abir Boukil: Étude des performances du procédé d'ultrafiltration lors de la concentration d'hydrolysats trypsiques de β-lactoglobuline prétraitée par hautes pressions hydrostatiques. Universite Laval, Québec, Canada, 2018.
  • Sana, Madiha – Mustahsan, Muhammad: Finite Element Approximation of Optimal Control Problem with Weighted Extended B-Splines. Mathematics, č. 5, zv. 7, 2019.
  • Hammad, A.W.A. – Rey, D. – Bu-Qammaz, A. – Grzybowska, H. – Akbarnezhad, A.: Mathematical optimization in enhancing the sustainability of aircraft trajectory: A review. International Journal of Sustainable Transportation, 2019.
  • Al-Obaidi, M. – Kara-Zaitri, C. – Mujtaba, I.: Wastewater Treatment by Reverse Osmosis Process, Boca Raton: CRC Press, 2020.
  • Baena-Moreno, Francisco M – le Saché, Estelle – Pastor-Pérez, Laura – Reina, TR: Biogas as a Renewable Energy Source: Focusing on Principles and Recent Advances of Membrane-Based Technologies for Biogas Upgrading. V Membranes for Environmental Applications, str. 95–120, 2020.
  • A. Mészáros – M. Klaučo – K. Kiš: Neural Network Controllers in Chemical Technologies. V 2020 IEEE 15th International Conference of System of Systems Engineering (SoSE), str. 397-402, 2020.
  • Alardhi, Saja Mohsen – Alrubaye, Jamal M – Albayati, Talib M: Removal of Methyl Green Dye from simulated waste water using Hollow Fiber Ultrafiltration Membrane. V IOP Conference Series: Materials Science and Engineering, str. 052020, 2020.
  • Servent, A. – Abreu, F.A.P. – Dhuique-Mayer, C. – Belleville, M.-P. – Dornier, M.: Concentration and purification by crossflow microfiltration with diafiltration of carotenoids from a by-product of cashew apple juice processing. Innovative Food Science and Emerging Technologies, č. 102519, zv. 66, 2020.
  • Mierzwa, J.C. – Lemos, H.G. – Ragio, R.A. – Conceição, A.C.S. – Venancio, E.C. – Subtil, E.L.: Assessment of mixed matrix membranes (MMMs) incorporated with graphene oxide (GO) for co-treatment of wastewater and landfill leachate (LFL) in a membrane bioreactor (MBR). Chemical Engineering Journal, str. 131772, 2021.
  • Montero, Manuel – Acosta, Oscar G. – Bonilla, I, Ana: Membrane fractionation of gelatins extracted from skin of yellowfin tuna (Thunnus albacares): effect on molecular sizes and gelling properties of fractions. Cyta-journal of Food, č. 1, zv. 20, str. 183-189, 2022.
  • Cao, Wen – Xu, Yufeng: Collocation Method for Optimal Control of a Fractional Distributed System. Fractal and Fractional, č. 10, zv. 6, str. 594, 2022.
H. Thompson – R. Paulen – M. Reniers – C. Sonntag – S. Engell: Analysis of the State-of-the-Art and Future Challenges in Cyber-physical Systems of Systems. 2015.
  • Počet citácií       6
  • Koegel, Markus – Findeisen, Rolf: Improved Robust Decentralized MPC. V 2018 European Control Conference (ECC), str. 312-318, 2018.
  • Fitzgerald, John – Gamble, Carl – Larsen, Peter Gorm – Pierce, Kenneth – Woodcock, Jim: Cyber-Physical Systems Design: Formal Foundations, Methods and Integrated Tool Chains (Invited Paper). V 2015 IEEE/acm 3rd Fme Workshop on Formal Methods in Software Engineering, str. 40-46, 2015.
  • Lucia, Sergio – Koegel, Markus – Zometa, Pablo – Quevedo, Daniel E. – Findeisen, Rolf: Predictive control, embedded cyberphysical systems and systems of systems - A perspective. Annual Reviews in Control, zv. 41, str. 193-207, 2016.
  • Rojas, Rafael A. – Rauch, Erwin: From a literature review to a conceptual framework of enablers for smart manufacturing control. International Journal of Advanced Manufacturing Technology, č. 1-4, zv. 104, str. 517-533, 2019.
  • Rojas, Rafael A. – Rauch, Erwin – Vidoni, Renato – Matt, Dominik T.: Enabling Connectivity of Cyber-Physical Production Systems: A Conceptual Framework. V 27th International Conference on Flexible Automation and Intelligent Manufacturing, Faim2017, str. 822-829, 2017.
  • Challenger, Moharram – Vangheluwe, Hans: Towards Employing ABM and MAS Integrated with MBSE for the Lifecycle of SCPSoS. V Proceedings of the 23rd ACM/IEEE International Conference on Model Driven Engineering Languages and Systems: Companion Proceedings, str. 1-7, 2020.
S. Engell – R. Paulen – M. Reniers – C. Sonntag – H. Thompson: Core Research and Innovation Areas in Cyber‐Physical Systems of Systems, V Cyber Physical Systems. Design, Modeling, and Evaluation, Editor(i): Christian Berger and Mohammad Reza Mousavi, Springer, zv. 9361, str. 40–56, 2015.
  • Počet citácií       36
  • Colombo,A. W. – Karnouskos,S. – Kaynak,O. – Shi,Y. – Yin,S.: Industrial Cyberphysical Systems: A Backbone of the Fourth Industrial Revolution. IEEE Industrial Electronics Magazine, č. 1, zv. 11, str. 6-16, 2017.
  • Erkki Jantunen – Urko Zurutuza – Michele Albano – Giovanni di Orio – Pedro Maló – Csaba Hegedus: The Way Cyber Physical Systems Will Revolutionise Maintenance. V 30th Conference on Condition Monitoring and Diagnostic Engineering Management (COMADEM 2017), Preston, United Kingdom, 2017.
  • Palkovits-Rauter, Silke – Maksuti, Silia – Bicaku, Ani – Tauber, Markus: Towards Trustworthy End-to-End Communication inIndustry 4.0. IEEE, V IEEE 15th International Conference of Industrial Inforimatics (INDIN) 2017, 2017.
  • Thramboulidis,K. – Bochalis,P. – Bouloumpasis,J.: A framework for MDE of IoT-based manufacturing cyber-physical systems. V ACM International Conference Proceeding Series, 2017.
  • Cimini, Chiara – Pirola, Fabiana – Pinto, Roberto – Cavalieri, Sergio: A human-in-the-loop manufacturing control architecture for the next generation of production systems. Journal of Manufacturing Systems, zv. 54, str. 258-271, 2020.
  • Siri, S. – Ferrara, A. – Sacone, S.: Emerging freeway traffic control strategies. Advances in Industrial Control, č. 9783319759593, str. 293-311, 2018.
  • Makio-Marusik,E. – Ahmad,B. – Harrison,R. – Makio,J. – Walter,A.: Competences of cyber physical systems engineers - Survey results. V Proceedings - 2018 IEEE Industrial Cyber-Physical Systems, ICPS 2018, str. 491-496, 2018.
  • Zivkovic,V. – Novoselnik,B. – Baotic,M.: Alternating direction method of multipliers in optimal control of systems of systems. V 2018 41st International Convention on Information and Communication Technology, Electronics and Microelectronics, MIPRO 2018 - Proceedings, str. 908-913, 2018.
  • Sirsak Tepjit – Imre Horváth – Zoltán Rusák: Transdisciplinary Engineering Methods for Social Innovation of Industry 4.0, Kapitola: An Analysis of the State of Framework Development for Reasoning in Smart Cyber-Physical Systems. IOS Pres, str. 82-92, 2018.
  • Fele,F. – Debada,E. – Maestre,J. M. – Camacho,E. F.: Coalitional Control for Self-Organizing Agents. IEEE Transactions on Automatic Control, č. 9, zv. 63, str. 2883-2897, 2018.
  • Findeisen,R. – Kögel,M. – Blasi,S.: Distributed Model Predictive Control Using Cooperative Contract Options. IFAC-PapersOnLine, č. 20, zv. 51, str. 448-454, 2018.
  • Vassalos,D. – Boulougouris,E. – Bujorianu,L. M. – Theotokatos,G. – Bolbot,V.: Vulnerabilities and safety assurance methods in Cyber-Physical Systems: A comprehensive review. Reliability Engineering and System Safety, zv. 182, str. 179-193, 2019.
  • Maekioe-Marusik, Elena: Current Trends in Teaching Cyber Physical Systems Engineering A Literature Review. V 2017 IEEE 15TH INTERNATIONAL CONFERENCE ON INDUSTRIAL INFORMATICS (INDIN, str. 518-525, 2017.
  • Cha, Suhyun – Ulbrich, Mattias – Weigl, Alexander – Beckert, Bernhard – Land, Kathrin – Vogel-Heuser, Birgit: On the Preservation of the Trust by Regression Verification of PLC software for Cyber-Physical Systems of Systems. V 2019 IEEE 17th International Conference on Industrial Informatics (indin), str. 413-418, 2019.
  • Schmittner,C. – Matischek,R. – Tauber,M. – Palkovits-Rauter,S. – Maksuti,S. – Bicaku,A. – Delsing,J. – Thron,M. – Mantas,G.: Towards trustworthy end-to-end communication in industry 4.0. V Proceedings - 2017 IEEE 15th International Conference on Industrial Informatics, INDIN 2017, str. 889-896, 2017.
  • Schlüter, F. – Hetterscheid, E.: Morphology for designing cyber-physical systems in supply chain planning and control processes. Logistics Journal, zv. 2019, str. 1-11, 2019.
  • F. Fele: Coalitional model predictive control for systems of systems, Universidad de Sevilla, Universidad de Sevilla, 2019.
  • Antonella Ferrara – Simona Sacone – Silvia Siri: Freeway Traffic Modelling and Control, Springer, 2019.
  • Novoselnik, Branimir – Spudic, Vedrana – Baotic, Mato: Parametric Optimization Based MPC for Systems of Systems With Affine Coordination Constraints. IEEE Transactions on Automatic Control, č. 2, zv. 65, str. 649-663, 2020.
  • Iannino, Vincenzo – Colla, Valentina – Denker, Joachim – Goettsche, Marc: A CPS-Based Simulation Platform for Long Production Factories. Metals, č. 10, zv. 9, 2019.
  • Şekercioğlu, A. – Arvin, F. – Elmenreich, W. – Schmickl, T. – Di Caro, G.A. – Schranz, M. – Sende, M.: Swarm Intelligence and cyber-physical systems: Concepts, challenges and future trends. Swarm and Evolutionary Computation, zv. 60, str. 100762, 2021.
  • G. {Keramidas} – C. P. {Antonopoulos} – N. {Voros} – P. {Jääskeläinen} – M. C. {Cid} – E. I. {Zacharaki} – A. P. {Fournaris} – A. {Lalos}: CPSoSaware: Cross-Layer Cognitive Optimization Tools Methods for the Lifecycle Support of Dependable CPSoS. V 2020 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), str. 470-475, 2020.
  • Tepjit, Sirasak – Horváth, Imre – Rusák, Zoltán: The state of framework development for implementing reasoning mechanisms in smart cyber-physical systems: A literature review. Journal of Computational Design and Engineering, č. 4, zv. 6, str. 527-541, 2019.
  • Milena Guessi – Valdemar Vicente Graciano - Neto – Elisa Yumi Nakagawa: Topics on Information Systems: Short Courses for SBSI 2019, Kapitola: Architectural Description of Systems-of-Information. SBC, Porto Alegre, str. 29-52, 2020.
  • Challenger, Moharram – Vangheluwe, Hans: Towards Employing ABM and MAS Integrated with MBSE for the Lifecycle of SCPSoS. V Proceedings of the 23rd ACM/IEEE International Conference on Model Driven Engineering Languages and Systems: Companion Proceedings, str. 1-7, 2020.
  • Horváth, I.: A computational framework for procedural abduction done by smart cyber-physical systems. Designs, č. 1, zv. 3, str. 1-27, 2019.
  • Drabek, Christian – Shekhada, Dhavalkumar – Weiss, Gereon – Trapp, Mario – Ishigooka, Tasuku – Otsuka, Satoshi – Mizuochi, Mariko: Dependable and Efficient Cloud-Based Safety-Critical Applications by Example of Automated Valet Parking. Springer International Publishing, V Intelligent Transport Systems, From Research and Development to the Market Uptake, str. 90-109, 2021.
  • Leenders, Ludger – Ganz, Kirstin – Bahl, Bjoern – Hennen, Maike – Baumgaertner, Nils – Bardow, Andre: Scheduling coordination of multiple production and utility systems in a multi-leader multi-follower Stackelberg game. Computers & Chemical Engineering, zv. 150, str. 107321, 2021.
  • Doo-Hwan Bae – Yong-Jun Shin – Lingjun Liu – Sangwon Hyun: Platooning LEGOs: An Open Physical Exemplar for Engineering Self-Adaptive Cyber-Physical Systems-of-Systems. IEEE, V 2021 International Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS), str. 231-237, 2021.
  • Clarke, S.G. – Thapliyal, O. – Hwang, S. – Hwang, I.: Attack-Resilient Distributed Optimization-based Control of Multi-Agent Systems with Dual Interaction Networks. V AIAA Science and Technology Forum and Exposition, AIAA SciTech Forum 2022, str. 2022-2342, 2022.
  • Habib,M. K. – Chimsom I,C.: CPS: Role, Characteristics, Architectures and Future Potentials. V Procedia Computer Science, str. 1347-1358, 2022.
  • Chen, Zhiwei – Zhao, Tingdi – Jiao, Jian – Chu, Jiayun: Performance-threshold-based resilience analysis of system of systems by considering dynamic reconfiguration. Proceedings of the Institution of Mechanical Engineers Part B-journal of Engineering Manufacture, č. 14, SI, zv. 236, str. 1828-1838, 2022.
  • Bae,D. -. – Kim,H. – Hyun,S. – Shin,Y. -. – Cho,E.: Automatic Generation of Metamorphic Relations for a Cyber-Physical System-of-Systems Using Genetic Algorithm. V Proceedings - Asia-Pacific Software Engineering Conference, APSEC, str. 209-218, 2022.
  • Horvath, Imre: Designing next-generation cyber-physical systems: Why is it an issue?. Journal of Integrated Design & Process Science, č. 3-4, zv. 26, str. 317-349, 2022.
  • Tim Weilkiens – Jesko G. Lamm – Stephan Roth – Markus Walker: Model-Based System Architecture, Second Edition, John Wiley & Sons, Inc., 2022.
  • Heinrich, Jana – Balduf, Florian – Becker, Martin – Adler, Rasmus – Elberzhager, Frank: Industry Voices on Software Engineering Challenges in Dynamic Systems of Systems. V 2023 IEEE/acm 11th International Workshop on Software Engineering for Systems-of-systems and Software Ecosystems, Sesos, str. 58-64, 2023.
R. Martí – S. Lucia – D. Sarabia – R. Paulen – S. Engell – C. de Prada: An Efficient Distributed Algorithm for Multi-Stage Robust Nonlinear Predictive Control. V European Control Conference 2015, Linz, Austria, str. 2669–2674, 2015.
  • Počet citácií       6
  • Jørgensen, John Bagterp – Frison, Gianluca – Kouzoupis, Dimitris – Diehl, Moritz: A high-performance Riccati based solver for tree-structured quadratic program. IFAC-PapersOnLine, č. 1, zv. 50, str. 14399-14405, 2017.
  • Pakazad,S. K. – Hansson,A.: Exploiting chordality in optimization algorithms for model predictive control, zv. 2227, 2018.
  • Diehl,M. – Rawlings,J. B. – Horn,G. – Gillis,J. – Andersson,J. A. E.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation, č. 1, zv. 11, 2019.
  • Kouzoupis, D. – Klintberg, E. – Frison, G. – Gros, S. – Diehl, M.: A dual Newton strategy for tree-sparse quadratic programs and its implementation in the open-source software treeQP. International Journal of Robust and Nonlinear Control, č. 8, zv. 29, str. 2438-2457, 2019.
  • Pakazad, S.K. – Hansson, A. – Ahmadi, S.P.: Efficient robust model predictive control using chordality. V 2019 18th European Control Conference, ECC 2019, str. 4270-4275, 2019.
  • Liu, S. – Sadowska, A. – De Schutter, B.: A scenario-based distributed model predictive control approach for freeway networks. Transportation Research Part C: Emerging Technologies, zv. 136, str. 103261, 2022.
S. Thangavel – S. Lucia – R. Paulen – S. Engell: Towards Dual Robust Nonlinear Model Predictive Control: A Multi-stage Approach. V 2015 American Control Conference, Chicago, IL, USA. July 1-3, 2015., str. 428–433, 2015.
  • Počet citácií       7
  • Rossi, Francesco – Reklaitis, Gintaras – Manenti, Flavio – Buzzi-Ferraris, Guido: Multi-Scenario Robust Online Optimization and Control of Fed-Batch Systems via Dynamic Model-Based Scenario Selection. Aiche Journal, č. 9, zv. 62, str. 3264-3284, 2016.
  • Schloeder, J. P. – Potschka, A. – La, H. C. – Bock, H. G.: Dual Control and Information Gain in Controlling Uncertain Processes. Ifac Papersonline, č. 7, zv. 49, str. 139-144, 2016.
  • Diehl,M. – Horn,G. – Gillis,J. – Andersson,J. A. E. – Rawlings,J. B.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation, č. 1, zv. 11, 2019.
  • Mesbah,A.: Stochastic model predictive control with active uncertainty learning: A Survey on dual control. Annual Reviews in Control, zv. 45, str. 107-117, 2018.
  • Lappas, N.H. – Tejeda-Iglesias, M. – Gounaris, C.E. – Ricardez-Sandoval, L.: Explicit model predictive controller under uncertainty: An adjustable robust optimization approach. Journal of Process Control, zv. 84, str. 115-132, 2019.
  • Rossi,F. – Manenti,F. – Buzzi-Ferraris,G. – Reklaitis,G.: Stochastic NMPC/DRTO of batch operations: Batch-to-batch dynamic identification of the optimal description of model uncertainty. Computers and Chemical Engineering, zv. 122, str. 395-414, 2019.
  • Paulson, Joel A. – Mesbah, Ali: An efficient method for stochastic optimal control with joint chance constraints for nonlinear systems. International Journal of Robust and Nonlinear Control, č. 15, SI, zv. 29, str. 5017-5037, 2019.
B. Chachuat – B. Houska – R. Paulen – N. Peric – J. Rajyaguru – M. Villanueva: Set-Theoretic Approaches in Analysis, Estimation and Control of Nonlinear Systems. V 9th International Symposium on Advanced Control of Chemical Processes ADCHEM 2015 Whistler, British Colombia, Canada, 7-10 June 2015, str. 982–996, 2015.
  • Počet citácií       31
  • Findeisen,R. – Kogel,M. – Kishida,M.: Verifying robust forward admissibility for nonlinear systems using (skewed) structured singular values. V 2016 IEEE 55th Conference on Decision and Control, CDC 2016, str. 4065-4071, 2016.
  • Findeisen,R. – Lucia,S. – Bathge,T.: Exploiting models of different granularity in robust predictive control. V 2016 IEEE 55th Conference on Decision and Control, CDC 2016, str. 2763-2768, 2016.
  • Yichen Zhang – Yan Li – Kevin Tomsovic – Seddik Djouadi – Meng Yue: Review on Set-Theoretic Methods for Safety Verification and Control of Power System. IET Energy Systems Integration, 2020.
  • Muxin Sun: Design of Multi-parametric NCO-Tracking Controllers for Linear Continuous-time Systems, Imperial College London, 2018.
  • Diedam, H. – Sager, S.: Global optimal control with the direct multiple shooting method. Optimal Control Applications & Methods, č. 2, SI, zv. 39, str. 449-470, 2018.
  • Schweidtmann,A. M. – Huster,W. R. – Lüthje,J. T. – Mitsos,A.: Deterministic global process optimization: Accurate (single-species) properties via artificial neural networks. Computers and Chemical Engineering, zv. 121, str. 67-74, 2019.
  • Najman,J. – Mitsos,A.: Improved McCormick relaxations in a branch-and-bound framework. V Computing and Systems Technology Division 2017 - Core Programming Area at the 2017 AIChE Annual Meeting, str. 482-492, 2017.
  • Schweidtmann,A. M. – Mitsos,A.: Deterministic Global Optimization with Artificial Neural Networks Embedded. Journal of Optimization Theory and Applications, č. 3, zv. 180, str. 925–948, 2019.
  • Pitt,J. A. – Banga,J. R.: Parameter estimation in models of biological oscillators: An automated regularised estimation approach. BMC Bioinformatics, č. 1, zv. 20, 2019.
  • Bongartz,D. – Mitsos,A.: Deterministic global flowsheet optimization: Between equation-oriented and sequential-modular methods. AIChE Journal, č. 3, zv. 65, str. 1022-1034, 2019.
  • Najman, J. – Mitsos, A.: Tighter McCormick relaxations through subgradient propagation. Journal of Global Optimization, 2019.
  • Huster, W.R. – Schweidtmann, A.M. – Mitsos, A.: Impact of Accurate Working Fluid Properties on the Globally Optimal Design of an Organic Rankine Cycle. Computer Aided Chemical Engineering, zv. 47, str. 427-432, 2019.
  • Schweidtmann, A.M. – Bongartz, D. – Huster, W.R. – Mitsos, A.: Deterministic Global Process Optimization: Flash Calculations via Artificial Neural Networks. Computer Aided Chemical Engineering, zv. 46, str. 937-942, 2019.
  • Najman, J. – Bongartz, D. – Mitsos, A.: Convex relaxations of componentwise convex functions. Computers and Chemical Engineering, č. 106527, zv. 130, 2019.
  • Najman,J. – Bongartz,D. – Mitsos,A.: Relaxations of thermodynamic property and costing models in process engineering. Computers and Chemical Engineering, zv. 130, 2019.
  • Wessling,M. – Mitsos,A. – Ostendorf,K. – Karwe,J. – Kamp,J. – Aumeier,B. M. – Schweidtmann,A. M. – Rall,D.: Simultaneous rational design of ion separation membranes and processes. Journal of Membrane Science, zv. 600, str. 117860, 2020.
  • D. Calzolari – A. Albu-Schäffer – A. M. Giordano: Error Bounds for PD-Controlled Mechanical Systems Under Bounded Disturbances Using Interval Arithmetic. IEEE Robotics and Automation Letters, č. 2, zv. 5, str. 1231-1238, 2020.
  • Bongartz, D. – Najman, J. – Mitsos, A.: Deterministic global optimization of steam cycles using the IAPWS-IF97 model. Optimization and Engineering, 2020.
  • Huster, W.R. – Schweidtmann, A.M. – Lüthje, J.T. – Mitsos, A.: Deterministic global superstructure-based optimization of an organic Rankine cycle. Computers and Chemical Engineering, č. 106996, zv. 141, 2020.
  • Najman, Jaromil – Mitsos, Alexander: On tightness and anchoring of McCormick and other relaxations. Journal of Global Optimization, č. 4, SI, zv. 74, str. 677-703, 2019.
  • Merhy, D. – Stoica Maniu, C. – Alamo, T. – Camacho, E.F. – Ben Chabane, S. – Chevet, T. – Makarov, M. – Hinostroza, I.: Guaranteed set-membership state estimation of an octorotor's position for radar applications. International Journal of Control, č. 11, zv. 93, str. 2760-2770, 2020.
  • Merhy, D. – Stoica Maniu, C. – Alamo, T. – Camacho, E.F. – Ben Chabane, S. – Chevet, T. – Makarov, M. – Hinostroza, I.: Guaranteed set-membership state estimation of an octorotor\\\'s position for radar applications. International Journal of Control, č. 11, zv. 93, str. 2760-2770, 2020.
  • Schweidtmann, A.M. – Weber, J.M. – Wende, C. – Netze, L. – Mitsos, A.: Obey validity limits of data-driven models through topological data analysis and one-class classification. Optimization and Engineering, 2021.
  • Urrea-Quintero, J.-H. – Fuhg, J.N. – Marino, M. – Fau, A.: PI/PID controller stabilizing sets of uncertain nonlinear systems: an efficient surrogate model-based approach. Nonlinear Dynamics, č. 1, zv. 105, str. 277-299, 2021.
  • Pribourg, Laurent – Ballet, Gabriel – dit Sandretto, Julien Alexandre – Fnadi, Mohamed: Guaranteed Identification of Viscous Friction for a Nonlinear Inverted Pendulum Through Interval Analysis and Set Inversion. V 2021 American Control Conference (ACC), str. 3920-3926, 2021.
  • Burre, J. – Bongartz, D. – Mitsos, A.: Comparison of MINLP formulations for global superstructure optimization. Optimization and Engineering, 2022.
  • Kappatou,C. D. – Bongartz,D. – Najman,J. – Sass,S. – Mitsos,A.: Global dynamic optimization with Hammerstein–Wiener models embedded. Journal of Global Optimization, 2022.
  • Ronzani, Daniele – Gillis, Joris – Pipeleers, Goele – Swevers, Jan: ECOset-ILC: an Iterative Learning Control Approach with Set-membership Uncertainty. V 2022 IEEE 17th International Conference on Advanced Motion Control (AMC), str. 68-75, 2022.
  • Fahr,S. – Mitsos,A. – Bongartz,D.: Simultaneous deterministic global flowsheet optimization and heat integration: Comparison of formulations. Computers and Chemical Engineering, zv. 162, str. 107790, 2022.
  • Burre,J. – Kabatnik,C. – Al-Khatib,M. – Bongartz,D. – Jupke,A. – Mitsos,A.: Global flowsheet optimization for reductive dimethoxymethane production using data-driven thermodynamic models. Computers and Chemical Engineering, zv. 162, str. 107806, 2022.
  • Sass, Susanne – Tsoukalas, Angelos – Bell, Ian H. H. – Bongartz, Dominik – Najman, Jaromil – Mitsos, Alexander: Towards global parameter estimation exploiting reduced data sets. Optimization Methods & Software, 2023.
M. Jelemenský – R. PaulenM. Fikar – Z. Kovacs: Time-Optimal Operation of Multi-Component Batch Diafiltration. Computers & Chemical Engineering, zv. 83, str. 131–138, 2015.
  • Počet citácií       8
  • Religa, Pawel – Kazmierczak, Bernadetta: Desalination of chromium tannery wastewater by nanofiltration with different diafiltration mode. Desalination and Water Treatment, zv. 64, str. 409-413, 2017.
  • Aguero, R. – Bringas, E. – San Roman, M. F. – Ortiz, I. – Ibanez, R.: Membrane Processes for Whey Proteins Separation and Purification. A Review. Current Organic Chemistry, č. 17, zv. 21, str. 1740-1752, 2017.
  • van der Padt, Albert – Jacobs, Marc – Ozkan, Leyla – Saltik, M. Bahadir: Optimal Start-Up and Operation Policy for an Ultrafiltration Membrane Unit in Whey Separation. V 26th European Symposium on Computer Aided Process Engineering (escape), Pt B, str. 1599-1604, 2016.
  • Liu, Ping – Li, Guodong – Liu, Xinggao – Zhang, Zeyin: A NOVEL FAST DYNAMIC OPTIMIZATION APPROACH FOR COMPLEX MULTIVARIABLE CHEMICAL PROCESS SYSTEMS. Canadian Journal of Chemical Engineering, č. 12, zv. 94, str. 2355-2363, 2016.
  • Torrestiana-Sánchez, B. – Martínez-Alvarado, J.C. – Aguilar-Uscanga, M.G.: Isolation of steviol glycosides by a two-step membrane process operating under sustainable flux. Food and Bioproducts Processing, zv. 101, str. 223-230, 2017.
  • Dario Jose Rincon Garcia – José Uriel Sepúlveda-Valencia – Héctor José Ciro-Velásquez: Evaluación del proceso de Diafiltración para la concentración de la proteína en el suero dulce de quesería. DYNA, zv. 87, str. 239-247, 2020.
  • Ricardez-Sandoval, Luis A. – Palma-Flores, Oscar – Andres-Martinez, Oswaldo: Optimal control and the Pontryagin's principle in chemical engineering: History, theory, and challenges. AICHE JOURNAL, č. 8, zv. 68, str. e17777, 2022.
  • Baldasso, Camila – Silvestre, Wendel Paulo – Silveira, Nauro – Vanin, Ana Paula – Medeiros Cardozo, Nilo Sergio – Tessaro, Isabel Cristina: Ultrafiltration and diafiltration modeling for improved whey protein purification. Separation Science and Technology, 2022.
A. Sharma – M. Jelemenský – R. PaulenM. Fikar: Modelling and Optimal Control of Membrane Process with Partial Recirculation. Editor(i): M. Fikar and M. Kvasnica, V Proceedings of the 20th International Conference on Process Control, Slovak Chemical Library, Štrbské Pleso, Slovakia, str. 90–95, 2015.
  • Počet citácií       1
  • Ashtankar, V, Poonam – Sawarkar, Punam: Role of Panchatikta Panchaprasutik Niruha Vasti in Prediabetes A case report. International Journal of Ayurvedic Medicine, č. 3, zv. 11, str. 588-593, 2020.
M. Jelemenský – A. Sharma – R. PaulenM. Fikar: Time-optimal Operation of Diafiltration Processes in the Presence of Fouling. Editor(i): Krist V. Gernaey and Jakob K. Huusom and Rafiqul Gani, V 12th International Symposium on Process Systems Engineering And 25th European Symposium on Computer Aided Process Engineering, Elsevier B.V, Copenhagen, Denmark, str. 1577–1582, 2015.
  • Počet citácií       1
  • Qalyoubi,L. – Al-Othman,A. – Al-Asheh,S.: Removal of ciprofloxacin antibiotic pollutants from wastewater using nano-composite adsorptive membranes. Environmental research, zv. 215, 2022.
R. Martí – S. Lucia – D. Sarabia – R. Paulen – S. Engell – C. de Prada: Improving scenario decomposition algorithms for robust nonlinear model predictive control. Computers & Chemical Engineering, zv. 79, str. 30–45, 2015.
  • Počet citácií       33
  • Gros, Sebastien – Fredriksson, Jonas – Dahl, John – Klintberg, Emil: An improved dual Newton strategy for scenario-tree MPC. V 2016 IEEE 55th Conference on Decision and Control (CDC), str. 3675-3681, 2016.
  • Zhang, S. – Jia, R. – You, F.: Transfer learning for end-product quality prediction of batch processes using domain-adaption joint-Y PLS. Computers and Chemical Engineering, zv. 140, str. 106943, 2020.
  • Dyro,R. – Harrison,J. – Sharma,A. – Pavone,M.: Particle MPC for Uncertain and Learning-Based Control. V IEEE International Conference on Intelligent Robots and Systems, str. 7127-7134, 2021.
  • Madsen, Henrik – Poulsen, Niels Kjolstad – Mahmoudi, Zeinab – Hagdrup, Morten – Boiroux, Dimitri – Jorgensen, John Bagterp: An Ensemble Nonlinear Model Predictive Control Algorithm in an Artificial Pancreas for People with Type 1 Diabetes. V 2016 European Control Conference (ECC), str. 2115-2120, 2016.
  • Zhang, Runfan – Chen, Diyi – Ma, Xiaoyi: Nonlinear Predictive Control of a Hydropower System Model. Entropy, č. 9, zv. 17, str. 6129-6149, 2015.
  • Klintberg, Emil – Gros, Sebastien: A Parallelizable Interior Point Method for Two-Stage Robust MPC. IEEE Transactions on Control Systems Technology, č. 6, zv. 25, str. 2087-2097, 2017.
  • Oberdieck, Richard Heinrich: Theoretical and algorithmic advances in multi-parametric optimization and control, Imperial College London, 2017.
  • Krishnamoorthy, D. – Foss, B. – Skogestad, S.: A Primal decomposition algorithm for distributed multistage scenario model predictive control. Journal of Process Control, zv. 81, str. 162-171, 2019.
  • Dinesh Krishnamoorthy – Bjarne Foss – Sigurd Skogestad: Gas Lift Optimization under Uncertainty. V Computer Aided Chemical Engineering, vol. 40, str. 1753-1758, 2017.
  • Kouzoupis, D. – Klintberg, E. – Diehl, M. – Gros, S.: A dual Newton strategy for scenario decomposition in robust multistage MPC. International Journal of Robust and Nonlinear Control, č. 6, zv. 28, str. 2340-2355, 2018.
  • Krishnamoorthy, Dinesh – Foss, Bjarne – Skogestad, Sigurd: A Distributed Algorithm for Scenario-based Model Predictive Control using Primal Decomposition. Ifac Papersonline, č. 18, zv. 51, str. 351-356, 2018.
  • Jäschke,J. – Krishnamoorthy,D. – Thombre,M. – Skogestad,S.: Data-driven Scenario Selection for Multistage Robust Model Predictive Control⁎. IFAC-PapersOnLine, č. 20, zv. 51, str. 462-468, 2018.
  • Han,X. -. – Feng,Y. – Dong,N. – Wu,A. -.: An improved model-free adaptive predictive control algorithm for nonlinear systems with large time delay. V Proceedings of 2018 IEEE 7th Data Driven Control and Learning Systems Conference, DDCLS 2018, str. 60-64, 2018.
  • Krishnamoorthy,D. – Suwartadi,E. – Foss,B. – Skogestad,S. – Jaschke,J.: Improving Scenario Decomposition for Multistage MPC Using a Sensitivity-Based Path-Following Algorithm. IEEE Control Systems Letters, č. 4, zv. 2, str. 581-586, 2018.
  • Holtorf, F. – Mitsos, A. – Biegler, L.T.: Multistage NMPC with on-line generated scenario trees: Application to a semi-batch polymerization process. Journal of Process Control, zv. 80, str. 167-179, 2019.
  • Garcia-Tirado, J. – Corbett, J.P. – Boiroux, D. – Jørgensen, J.B. – Breton, M.D.: Closed-loop control with unannounced exercise for adults with type 1 diabetes using the Ensemble Model Predictive Control. Journal of Process Control, zv. 80, str. 202-210, 2019.
  • Holtorf, Flemming – Mitsos, Alexander – Biegler, Lorenz T.: Adaptive Scenario Generation for Multistage NMPC with Shrinking Horizons. Ifac Papersonline, č. 1, zv. 52, str. 586-591, 2019.
  • Garcia-Tirado,J. – Colmegna,P. – Corbett,J. – Ozaslan,B. – Breton,M. D.: Ensemble model predictive control strategies can reduce exercise hypoglycemia in type 1 diabetes: In silico studies. V Proceedings of the American Control Conference, str. 4752-4758, 2019.
  • Kanavalau,A. – Masters,R. – Kähm,W. – Vassiliadis,V. S.: Robust thermal stability for batch process intensification with model predictive control. Computers and Chemical Engineering, zv. 130, 2019.
  • Garcia-Tirado,J. – Colmegna,P. – Corbett,J. P. – Ozaslan,B. – Breton,M. D.: In Silico Analysis of an Exercise-Safe Artificial Pancreas With Multistage Model Predictive Control and Insulin Safety System. Journal of Diabetes Science and Technology, č. 6, zv. 13, str. 1054-1064, 2019.
  • Walter Kähm: Thermal stability criteria embedded in advanced control systems for batch process intensification, University of Cambridge, University of Cambridge, 2019.
  • Tejeda-Iglesias, M. – Lappas, N.H. – Gounaris, C.E. – Ricardez-Sandoval, L.: Explicit model predictive controller under uncertainty: An adjustable robust optimization approach. Journal of Process Control, zv. 84, str. 115-132, 2019.
  • Allman, Andrew – Tang, Wentao – Daoutidis, Prodromos: DeCODe: a community-based algorithm for generating high-quality decompositions of optimization problems. Optimization and Engineering, č. 4, SI, zv. 20, str. 1067-1084, 2019.
  • Ribeiro,L. D. – Secchi,A. R.: A methodology to obtain analytical models that reduce the computational complexity faced in real time implementation of NMPC controllers. Brazilian Journal of Chemical Engineering, č. 3, zv. 36, str. 1255-1278, 2019.
  • Mathur, P. – Swartz, C.L.E. – Zyngier, D. – Welt, F.: Robust online scheduling for optimal short-term operation of cascaded hydropower systems under uncertainty. Journal of Process Control, zv. 98, str. 52-65, 2021.
  • Jäschke, J. – (Joyce) Yu, Z. – Thombre, M. – Biegler, L.T.: Sensitivity-Assisted multistage nonlinear model predictive control: Robustness, stability and computational efficiency. Computers and Chemical Engineering, zv. 148, str. 107269, 2021.
  • Li, H. – Swartz, C.L.E.: Robust model predictive control via multi-scenario reference trajectory optimization with closed-loop prediction. Journal of Process Control, zv. 100, str. 80-92, 2021.
  • Bjorvand, Simen – Jaschke, Johannes: Improving Primal Decomposition for Multistage MPC Using an Extended Newton Method. IEEE Control Systems Letters, zv. 7, str. 2677-2682, 2023.
  • MacKinnon, L. – Li, H. – Swartz, C.L.E.: Robust model predictive control with embedded multi-scenario closed-loop prediction. Computers and Chemical Engineering, zv. 149, str. 107283, 2021.
  • Nolasco, E. – Vassiliadis, V.S. – Kähm, W. – Adloor, S.D. – Ismaili, R.A. – Conejeros, R. – Espaas, T. – Gangadharan, N. – Mappas, V. – Scott, F. – Zhang, Q.: Optimal control in chemical engineering: Past, present and future. Computers and Chemical Engineering, zv. 155, str. 107528, 2021.
  • Alamir,M.: Learning against uncertainty in control engineering. Annual Reviews in Control, zv. 53, str. 19 - 29, 2022.
  • Ahmed,A. – del Rio-Chanona,E. A. – Mercangöz,M.: Linearizing nonlinear dynamics using deep learning. Computers and Chemical Engineering, zv. 170, 2023.
  • Jeong, Changhun – Furenes, Beathe – Sharma, Roshan: Implementation of simplified sequential stochastic model predictive control for operation of hydropower system under uncertainty. Computers & Chemical Engineering, zv. 179, str. 108409, 2023.
R. Paulen – M. Jelemenský – Z. Kovacs – M. Fikar: Economically optimal batch diafiltration via analytical multi-objective optimal control. Journal of Process Control, zv. 28, str. 73–82, 2015.
  • Počet citácií       9
  • Saltik, M. Bahadir – Ozkan, Leyla – Jacobs, Marc – van der Padt, Albert: Dynamic modeling of ultrafiltration membranes for whey separation processes. Computers & Chemical Engineering, zv. 99, str. 280-295, 2017.
  • Religaa, Pawel – Kazmierczak, Bernadetta: Desalination of chromium tannery wastewater by nanofiltration with different diafiltration mode. Desalination and Water Treatment, zv. 64, str. 409-413, 2017.
  • Wu,D. – Liang,J.: Construction of the cultivation system of innovation and entrepreneurship ability of economics and management specialty relying on multi-way tree optimal solution set. Boletin Tecnico/Technical Bulletin, č. 17, zv. 55, str. 380-387, 2017.
  • Khunnonkwao,P. – Jantama,K. – Kanchanatawee,S. – Galier,S. – Roux-de Balmann,H.: A two steps membrane process for the recovery of succinic acid from fermentation broth. Separation and Purification Technology, zv. 207, str. 451-460, 2018.
  • Robles, Angel – Victoria Ruano, Maria – Charfi, Amine – Lesage, Geoffroy – Heran, Marc – Harmand, Jerome – Seco, Aurora – Steyer, Jean-Philippe – Batstone, Damien J. – Kim, Jeonghwan – Ferrer, Jose: A review on anaerobic membrane bioreactors (AnMBRs) focused on modelling and control aspects. Bioresource Technology, zv. 270, str. 612-626, 2018.
  • Kumar, V. – Kaistha, N.: Invariants for optimal operation of a reactor-separator-recycle process. Journal of Process Control, zv. 82, str. 1-12, 2019.
  • Gao,F. – Zhang,R. – Wang,L.: Iterative learning stabilization and fault-tolerant control for batch processes, str. 1-323, 2019.
  • Ge, Yulei – Li, Shurong – Shi, Yuhuan – Han, Lu: An adaptive wavelet method for solving mixed-integer dynamic optimization problems with discontinuous controls and application to alkali-surfactant-polymer flooding. Engineering Optimization, č. 6, zv. 51, str. 1028-1048, 2019.
  • Gao, Yulan – Yang, Jie – Song, Xinwei – Shen, Dongmei – Wang, Wanfen – Zhang, Weimin – Jiang, Jichao: An experimental study on the use of a sequencing-batch membrane bioreactor (SBMBR) for the treatment of mixed municipal wastewater. Water Science and Technology, č. 6, zv. 83, str. 1459-1469, 2021.
S. Lucia – R. Paulen – S. Engell: Multi-stage Nonlinear Model Predictive Control with Verified Robust Constraint Satisfaction. V 53rd IEEE Conference on Decision and Control, Los Angeles, California, USA, zv. 53, str. 2816–2821, 2014.
  • Počet citácií       8
  • Pitarch, J. L. – Palacin, C. G. – De Prada, C. – Voglauer, B. – Seyfriedsberger, G.: Optimisation of the resource efficiency in an industrial evaporation system. Journal of Process Control, zv. 56, str. 1-12, 2017.
  • Thombre, Mandar – Krishnamoorthy, Dinesh – Skogestad, Sigurd – Jaschke, Johannes: Data-driven Scenario Selection for Multistage Robust Model Predictive Control. Ifac Papersonline, č. 20, zv. 51, str. 462-468, 2018.
  • Horn,G. – Gillis,J. – Andersson,J. A. E. – Rawlings,J. B. – Diehl,M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation, č. 1, zv. 11, 2019.
  • Holtorf, F. – Mitsos, A. – Biegler, L.T.: Multistage NMPC with on-line generated scenario trees: Application to a semi-batch polymerization process. Journal of Process Control, zv. 80, str. 167-179, 2019.
  • Xue, R. – Yuan, W. – Sun, J. – Wang, M.: An improved multi-stage nonlinear model predictive control with application to semi-batch polymerization. V 2019 12th Asian Control Conference, ASCC 2019, str. 1060-1065, 2019.
  • Holtorf, Flemming – Mitsos, Alexander – Biegler, Lorenz T.: Adaptive Scenario Generation for Multistage NMPC with Shrinking Horizons. Ifac Papersonline, č. 1, zv. 52, str. 586-591, 2019.
  • Hanema,J. – Lazar,M. – Tóth,R.: Heterogeneously parameterized tube model predictive control for LPV systems. Automatica, zv. 111, 2020.
  • Sun, Jing-Gao – Chen, Xian-Feng – Su, Guang-Hao – Wang, Meng – Pan, Hong-Guang: Multi-stage Nonlinear Model Predictive Control with Online Scenario Update for Semi-batch Polymerization Processes. International Journal of Control Automation and Systems, č. 10, zv. 20, str. 3187-3197, 2022.
R. Hernández – L. Simora – R. Paulen – S. Wegerhoff – R. Mazaeda – C. de Prada – S. Engell: Optimal Integrated Operation of a Sugar Production Plant. Editor(i): Jirí Jaromír Klemeš, Petar Sabev Varbanov, Peng Yen Liew, V 24th European Symposium on Computer Aided Process Engineering, Elsevier B.V, Radarweg 29, PO Box 211, 1000 AE Amsterdam, Netherlands, zv. 2014, str. 637–642, 2014.
  • Počet citácií       2
  • Khezri,R. – Golshannavaz,S. – Vakili,R. – Memar-Esfahani,B.: Multi-layer fuzzy-based under-frequency load shedding in back-pressure smart industrial microgrids. Energy, zv. 132, str. 96-105, 2017.
  • Tkachenko, V, Serhii – Sheiko, V, Tamila – Petrenko, Vasyl V. – Anisimova, Olena M. – Kuznietsova, V, Inha – Khomichak, Lubomir M. – Obodovych, Oleksandr M.: INFLUENCE OF CRYSTALLIZING AGENT ON SUGAR QUALITY. Acta Scientiarum Polonorum-technologia Alimentaria, č. 4, zv. 19, str. 457-465, 2020.
S. Lucia – R. Paulen: Robust Nonlinear Model Predictive Control with Reduction of Uncertainty Via Robust Optimal Experiment Design. V Preprints of the 19th IFAC World Congress Cape Town (South Africa) August 24 - August 29, 2014, str. 1904–1909, 2014.
  • Počet citácií       20
  • Rawlings,J. B. – Horn,G. – Gillis,J. – Andersson,J. A. E. – Diehl,M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation, č. 1, zv. 11, 2019.
  • Thuy Thi-Thien Le – Sager, Sebastian – Jost, Felix: A Feedback Optimal Control Algorithm with Optimal Measurement Time Points. Processes, č. 1, zv. 5, 2017.
  • La, H. C. – Potschka, A. – Schloeder, J. P. – Bock, H. G.: DUAL CONTROL AND ONLINE OPTIMAL EXPERIMENTAL DESIGN. Siam Journal on Scientific Computing, č. 4, zv. 39, str. B640-B657, 2017.
  • Krishnamoorthy, Dinesh – Foss, Bjarne – Skogestad, Sigurd: Real-Time Optimization under Uncertainty Applied to a Gas Lifted Well Network. Processes, č. 4, zv. 4, 2016.
  • Engell,S. – Lemoine-Nava,R. – Walter,S. F. – Körkel,S.: Online Optimal Experiment Design: Reduction of the Number of Variables. IFAC-PapersOnLine, č. 7, zv. 49, str. 889-894, 2016.
  • Bock,H. G. – La,H. C. – Potschka,A. – Schlöder,J. P.: Dual Control and Information Gain in Controlling Uncertain Processes. IFAC-PapersOnLine, č. 7, zv. 49, str. 139-144, 2016.
  • Heirung,T. A. N. – Foss,B. – Ydstie,B. E.: MPC-based dual control with online experiment design. Journal of Process Control, zv. 32, str. 64-76, 2015.
  • Van Impe, Jan – Logist, Filip – Telen, Dries – Houska, Boris: Self-Reflective Model Predictive Control. SIAM Journal on Control and Optimization, č. 5, zv. 55, str. 2959-2980, 2017.
  • La, Huu Chuong: Dual Control for Nonlinear Model Predictive Control, University of Heidelberg, Heidelberg, Germany, 2016.
  • Bradford,E. – Imsland,L.: Stochastic NMPC of Batch Processes Using Parameterized Control Policies, zv. 44, 2018.
  • Žáčeková, Eva: Identification for Model Predictive Control under Closed-loop Conditions, Czech Technical University in Prague, 2018.
  • Bardow,A. – Schilling,J. – Wolff,L. – Pyschik,J. – Fleitmann,L.: Optimal experimental design of physical property measurements for optimal chemical process simulations. Fluid Phase Equilibria, zv. 557, str. 113420, 2022.
  • Jaschke, J. – Skogestad, S. – Krishnamoorthy, D.: Multistage model predictive control with online scenario tree update using recursive Bayesian weighting. V 2019 18th European Control Conference, ECC 2019, str. 1443-1448, 2019.
  • Hille, R. – Budman, H.M.: Experimental Design for Batch-to-Batch Optimization under Model-Plant Mismatch. Industrial and Engineering Chemistry Research, 2019.
  • Walz, Olga – Djelassi, Hatim – Mitsos, Alexander: Optimal experimental design for optimal process design: A trilevel optimization formulation. Aiche Journal, č. 1, zv. 66, str. e16788, 2020.
  • Walter Kähm: Thermal stability criteria embedded in advanced control systems for batch process intensification, University of Cambridge, University of Cambridge, 2019.
  • Bitmead,R. R. – Bruggemann,S.: Surrogate problems for tractable excitation management in stochastic MPC. V Proceedings of the IEEE Conference on Decision and Control, str. 2562-2567, 2019.
  • Fleitmann, L. – Pyschik, J. – Wolff, L. – Bardow, A.: Optimal physical property data for process simulations by optimal experimental design. Computer Aided Chemical Engineering, zv. 50, str. 851-857, 2021.
  • Horvathova,M. – Ishihara,N. – Oravec,J. – Chida,Y.: Robust Setpoint Tracking of a Linear System with Discrete Actuators. V Proceedings of the 2021 23rd International Conference on Process Control, PC 2021, str. 229-236, 2021.
  • Nolasco, E. – Vassiliadis, V.S. – Kähm, W. – Adloor, S.D. – Ismaili, R.A. – Conejeros, R. – Espaas, T. – Gangadharan, N. – Mappas, V. – Scott, F. – Zhang, Q.: Optimal control in chemical engineering: Past, present and future. Computers and Chemical Engineering, zv. 155, str. 107528, 2021.
M. Jelemenský – R. PaulenM. Fikar – Z. Kovacs: Time-optimal Diafiltration in the Presence of Membrane Fouling. V Preprints of the 19th IFAC World Congress Cape Town (South Africa) August 24 - August 29, 2014, str. 4897–4902, 2014.
  • Počet citácií       5
  • Zhang, Bopeng – Kotsalis, Georgios – Khan, Jahanzeb – Xiong, Zhaoyang – Igou, Thomas – Lan, Guanghui – Chen, Yongsheng: Backwash sequence optimization of a pilot-scale ultrafiltration membrane system using data-driven modeling for parameter forecasting. Journal of Membrane Science, zv. 612, str. 118464, 2020.
  • Sob, P.B.: Performance improvement of a centrifugal pump filtration system for industrial and domestic applications. International Journal of Engineering Research and Technology, č. 8, zv. 13, str. 1840-1846, 2020.
  • Gao, Yulan – Yang, Jie – Song, Xinwei – Shen, Dongmei – Wang, Wanfen – Zhang, Weimin – Jiang, Jichao: An experimental study on the use of a sequencing-batch membrane bioreactor (SBMBR) for the treatment of mixed municipal wastewater. Water Science and Technology, č. 6, zv. 83, str. 1459-1469, 2021.
  • Lekalakala, T.S. – Sob, P.B. – Alugongo, A.A. – Tengen, T.B.: Improving the efficiency and stability of centrifugal pump filtration system using membrane system. V Proceedings of the International Conference on Industrial Engineering and Operations Management, str. 1581-1590, 2020.
  • Cywińska-Antonik, Magdalena – Chen, Zhe – Groele, Barbara – Marszałek, Krystian: Application of Emerging Techniques in Reduction of the Sugar Content of Fruit Juice: Current Challenges and Future Perspectives. Foods, č. 6, zv. 12, str. 1181, 2023.
M. Jelemenský – R. PaulenM. Fikar – Z. Kovacs: Time-Optimal Control of Batch Multi-Component Diafiltration Processes. Editor(i): Jirí Jaromír Klemeš, Petar Sabev Varbanov, Peng Yen Liew, V 24th European Symposium on Computer Aided Process Engineering, Elsevier B.V, Radarweg 29, PO Box 211, 1000 AE Amsterdam, Netherlands, zv. 2014, str. 553–558, 2014.
  • Počet citácií       1
  • Deb, Tanmoy Kanti: Implementation of membrane processes for improvement of the detection of food contaminants, Universidade Nova de Lisboa, 2015.
R. Paulen – B. Benyahia – M. A. Latifi – M. Fikar: Analysis of optimal operation of a fed-batch emulsion copolymerization reactor used for production of particles with core–shell morphology. Computers & Chemical Engineering, zv. 66, str. 233–243, 2014.
  • Počet citácií       3
  • Faust, J.M.M. – Hamzehlou, S. – Leiza, J.R. – Asua, J.M. – Mhamdi, A. – Mitsos, A.: Dynamic optimization of a two-stage emulsion polymerization to obtain desired particle morphologies. Chemical Engineering Journal, zv. 359, str. 1035-1045, 2019.
  • Faust, J.M.M. – Gerlinger, W. – Naeem, O. – Mhamdi, A. – Mitsos, A.: Inline Raman Spectroscopy of an Emulsion Copolymerization in an Industrial Pilot Plant Using Indirect Hard Modeling. Chemie-Ingenieur-Technik, 2021.
  • Yu, Jie – Ma, Qingying – Fang, Xiaoyun – Li, Yanfei – Zhao, Linyi – Lu, Quanfang: Synthesis of styrene-acrylate emulsion by glow discharge electrolysis plasma and its application for the conservation of simulated disrupting murals in Dunhuang Mogao grottoes. Plasma Processes and Polymers, 2023.
R. Paulen – M. Villanueva – M. Fikar – B. Chachuat: Guaranteed Parameter Estimation in Nonlinear Dynamic Systems using Improved Bounding Techniques. V Proceedings of the 12th European Control Conference, Zurich, Switzerland, str. 4514–4519, 2013.
  • Počet citácií       9
  • Krebs, Stefan – Schnurr, Christoph – Pfeifer, Martin – Weigold, Joerg – Hohmann, Soeren: Reduced-order hybrid interval observer for verified state estimation of an induction machine. Control Engineering Practice, zv. 57, str. 157-168, 2016.
  • Steimel, Jochen – Engell, Sebastian: Optimization-Based Support for Process Design under Uncertainty: A Case Study. Aiche Journal, č. 9, zv. 62, str. 3404-3419, 2016.
  • Krebs, Stefan – Pfeifer, Martin – Fugel, Sebastian – Weigold, Joerg – Hohmann, Soeren: Interval Observer for LPV Systems Based on Time-variant Transformations. V 2016 IEEE 55th Conference on Decision and Control (CDC), str. 4090-4096, 2016.
  • Engell, Sebastian – Goerke, Thilo: Application of Evolutionary Algorithms in Guaranteed Parameter Estimation. V 2016 IEEE Congress on Evolutionary Computation (cec), str. 5100-5105, 2016.
  • Hille,R. – Budman,H. M.: Simultaneous identification and optimization of biochemical processes under model-plant mismatch using output uncertainty bounds. Computers and Chemical Engineering, zv. 113, str. 125-138, 2018.
  • Sheludko,A. S.: Approximation of the solution set for a system of nonlinear inequalities for modelling a one-dimensional chaotic process. Bulletin of the South Ural State University, Series: Mathematical Modelling, Programming and Computer Software, č. 1, zv. 11, str. 152-157, 2018.
  • Sheludko, A.S.: Parameter Estimation for One-Dimensional Chaotic Systems by Guaranteed Algorithm and Particle Swarm Optimization. IFAC-PapersOnLine, č. 32, zv. 51, str. 337-342, 2018.
  • Biegler,L. T. – Thierry,D. – Rodriguez,J. S. – Short,M. – Chen,W. – García-Muñoz,S. – Schenk,C.: Introducing KIPET: A novel open-source software package for kinetic parameter estimation from experimental datasets including spectra. Computers and Chemical Engineering, zv. 134, 2020.
  • Khadanovich, D.V.: Guaranteed Estimation in the Problem of Transformer Windings DC Resistance Measuring. V Proceedings - 2021 3rd International Conference on Control Systems, Mathematical Modeling, Automation and Energy Efficiency, SUMMA 2021, str. 56-61, 2021.
R. Paulen – M. Villanueva – B. Chachuat: Optimization-Based Domain Reduction in Guaranteed Parameter Estimation of Nonlinear Dynamic Systems. Editor(i): Tarbouriech, Sophie; Krstic, Miroslav, V 9th IFAC Symposium on Nonlinear Control Systems, International Federation of Automatic Control, str. 564–569, 2013.
  • Počet citácií       2
  • Shaqfa, M. – Beyer, K.: Pareto-like sequential sampling heuristic for global optimisation. Soft Computing, č. 14, zv. 25, str. 9077-9096, 2021.
  • Shaqfa,M. – Beyer,K.: A virtual microstructure generator for 3D stone masonry walls. European Journal of Mechanics, A/Solids, zv. 96, str. 104656, 2022.
M. Jelemenský – R. PaulenM. Fikar – Z. Kovacs: Economically Optimal Control of Batch Diafiltration Processes. V IEEE Multi-Conference on Systems and Control, Hyderabad, India, str. 734–739, 2013.
  • Počet citácií       1
  • Araromi, Dauda Olurotimi – Ajala, Olajide Olukayode – Sulayman, Aminah Abolore: Development of fuzzy-based autoregressive integrated moving average exogenous input model for filtration process. International Journal of Fuzzy Computation and Modelling, č. 1, zv. 3, str. 1–15, 2020.
R. Paulen – M. Jelemenský – M. Fikar – Z. Kovacs: Optimal balancing of temporal and buffer costs for ultrafiltration/diafiltration processes under limiting flux conditions. Journal of Membrane Science, zv. 444, str. 87–95, 2013.
  • Počet citácií       8
  • Wei, X. – Wang, S. – Shi, Y. – Xiang, H. – Chen, J.: Application of positively charged composite hollow-fiber nanofiltration membranes for dye purification. Industrial and Engineering Chemistry Research, č. 36, zv. 53, str. 14036-14045, 2014.
  • Foley, G.: When should batch ultrafiltration be stopped to maximise profit in the recovery of a non-rejected solute?. Journal of Food Engineering, zv. 153, str. 8-11, 2014.
  • Chaparro, Luis – Dhuique-Mayer, Claudie – Castillo, Soraya – Vaillant, Fabrice – Servent, Adrien – Dornier, Manuel: Concentration and purification of lycopene from watermelon juice by integrated microfiltration-based processes. Innovative Food Science & Emerging Technologies, č. A, zv. 37, str. 153-160, 2016.
  • Naseri Rad, S. – Shirazi, M. M. A. – Marzban, R.: Application of Membrane Separation Technology in Downstream Processing of Bacillus thuringiensis Biopesticide: A Review. Journal of Membrane Science and Research, č. 2, zv. 2, str. 66-77, 2015.
  • Chalova,V. I. – Silva,C. L. M. – Rustad,T. – Kalaydzhiev,H. – Ivanova,P.: Comparative biochemical profile of protein-rich products obtained from industrial rapeseed meal. Emirates Journal of Food and Agriculture, č. 3, zv. 29, str. 170-178, 2017.
  • Chaparro, L. – Castillo, S. – Vaillant, F. – Servent, A. – Dornier, M.: Effect of microfiltration and diafiltration on carotenoid and aromatic compounds of watermelon juice (Citrullus lanatus L.) [Efecto de la microfiltración y diafiltración en el contenido de carotenoides y compuestos aromáticos del jugo de sandía (Citru. Bioagro, č. 3, zv. 29, str. 185-196, 2017.
  • Kumar, V. – Kaistha, N.: Invariants for optimal operation of a reactor-separator-recycle process. Journal of Process Control, zv. 82, str. 1-12, 2019.
  • Da, X. – Qi, T. – Zhang, Y. – Chen, X. – Cui, Z. – Qiu, M. – Fan, Y.: Modeling and optimal operation of intermittent feed diafiltration for refining oligodextran using nanoporous ceramic membranes. Separation and Purification Technology, zv. 253, str. 117491, 2020.
R. Paulen – B. Benyahia – M. A. Latifi – M. Fikar: Dynamic optimization of semi-batch emulsion copolymerization reactor for styrene/butyl acrylate in the presence of a chain transfer agent. Editor(i): Andrzej Kraslawski and Ilkka Turunen, V 23rd European Symposium on Computer Aided Process Engineering, Elsevier, Radarweg 29, PO Box 211, 1000 AE Amsterdam, The Netherlands, zv. 32, str. 721–726, 2013.
  • Počet citácií       2
  • Macbeth, A.J. – Lin, Z. – Goddard, J.M.: General method for emulsion polymerization to yield functional terpolymers. MethodsX, zv. 7, str. 101110, 2020.
  • Averkin, D. V.: Synthesis of Particle Size Standards Based on Aqueous Suspensions of Polystyrene Latex Spheres. Measurement Techniques, č. 12, zv. 65, str. 936-941, 2023.
R. PaulenM. Fikar – G. Foley – Z. Kovacs – P. Czermak: Time-optimal batch diafiltration. V 8th International Symposium on Advanced Control of Chemical Processes ADCHEM 2012 Singapore, 10-13 July 2012, str. 804–809, 2012.
  • Počet citácií       1
  • Bondar, S. – Chabanova, O. – Sharakhmatova, T. – Trubnikova, A.: ANALYSIS OF A NEW DIAFILTRATION METHOD OF CLEANING BUTTERMILK FROM LACTOSE WITH MINERAL COMPOSITION PRESERVED. Journal of Food Science and Technology-ukraine, č. 1, zv. 12, str. 90-98, 2018.
R. PaulenM. Fikar – G. Foley – Z. Kovacs – P. Czermak: Optimal feeding strategy of diafiltration buffer in batch membrane processes. Journal of Membrane Science, zv. 411-412, str. 160–172, 2012.
  • Počet citácií       19
  • Buonomenna, M. G.: Membrane processes for a sustainable industrial growth. RSC Advances, č. 17, zv. 3, str. 5694-5740, 2013.
  • Schlosser, Š.: Engineering Aspects of Food Biotechnology, Kapitola: Membrane filtration. CRC Press, str. 165-180, 2013.
  • Sala, L. – Gautério, G.V. – Younan, F.F. – Brandelli, A. – Moraes, C.C. – Kalil, S.J.: Integration of ultrafiltration into an aqueous two-phase system in the keratinase purification. Process Biochemistry, č. 11, zv. 49, str. 2016-2024, 2014.
  • Wang, L. – Yang, Z. – Wang, L. – Zhu, R.: Minimizing the operation time for continuous feed diafiltration processes under constant concentration ratio. Desalination, zv. 346, str. 100-106, 2014.
  • Peixoto, C. – Nestola, P. – Carrondo, M. J. T. – Alves, P. M. – Schleuss, T. – Mota, J. P. B. – Martins, D. L. – Roederstein, S.: Evaluation of Novel Large Cut-Off Ultrafiltration Membranes for Adenovirus Serotype 5 (Ad5) Concentration. PLoS ONE, č. 12, zv. 9, str. e115802, 2014.
  • Carrondo, M.J.T. – Mota, J.P.B. – Alves, P.M. – Silva, R.R.J.S. – Peixoto, C. – Nestola, P.: Improved virus purification processes for vaccines and gene therapy. Biotechnology and Bioengineering, č. 5, zv. 112, str. 843-857, 2015.
  • Lutz H.: Ultrafiltration for Bioprocessing: Development and Implementation of Robust Processes, 2015.
  • Nguyen, D. T. N. N. – Lameloise, M. -L. – Guiga, W. – Lewandowski, R. – Bouix, M. – Fargues, C.: Optimization and modeling of diananofiltration process for the detoxification of ligno-cellulosic hydrolysates - Study at pre-industrial scale. Journal of Membrane Science, zv. 512, str. 111-121, 2016.
  • Saltik, M. Bahadir – Ozkan, Leyla – Jacobs, Marc – van der Padt, Albert: Dynamic modeling of ultrafiltration membranes for whey separation processes. Computers & Chemical Engineering, zv. 99, str. 280-295, 2017.
  • Religaa, Pawel – Kazmierczak, Bernadetta: Desalination of chromium tannery wastewater by nanofiltration with different diafiltration mode. Desalination and Water Treatment, zv. 64, str. 409-413, 2017.
  • Portugal, Carla A. M.: Control of Protein-Surface Interactions and Transport Properties: Functional Membranes and Operating Conditions. Current Organic Chemistry, č. 17, zv. 21, str. 1725-1739, 2017.
  • Tavakolinaeini Ashkan: Large Scale Production, Purification, and Modification of Chitosan-based Complexes for Gene Therapy, Universite de Montreal, 2017.
  • Pirrung, S.M. – Berends, C. – Backx, A.H. – van Beckhoven, R.F.W.C. – Eppink, M.H.M. – Ottens, M.: Model-based optimization of integrated purification sequences for biopharmaceuticals. Chemical Engineering Science: X, č. 100025, zv. 3, 2019.
  • Kumar, V. – Kaistha, N.: Invariants for optimal operation of a reactor-separator-recycle process. Journal of Process Control, zv. 82, str. 1-12, 2019.
  • Qi, T. – Da, X. – Zhang, Y. – Chen, X. – Cui, Z. – Qiu, M. – Fan, Y.: Modeling and optimal operation of intermittent feed diafiltration for refining oligodextran using nanoporous ceramic membranes. Separation and Purification Technology, zv. 253, str. 117491, 2020.
  • Héctor José Ciro-Velásquez – José Uriel Sepúlveda-Valencia – Dario Jose Rincon Garcia: Evaluación del proceso de Diafiltración para la concentración de la proteína en el suero dulce de quesería. DYNA, zv. 87, str. 239-247, 2020.
  • Briesen, H. – Kuhn, M.: Optimizing the axial resistance profile of submerged hollow fiber membranes. Processes, č. 1, zv. 9, str. 1-13, 2021.
  • Qi,T. – Yang,D. – Chen,X. – Qiu,M. – Fan,Y.: Rapid removal of lactose for low-lactose milk by ceramic membranes. Separation and Purification Technology, zv. 289, str. 120601, 2022.
  • Hidane, Takanori – Demura, Mikihide – Morisada, Shintaro – Ohto, Keisuke – Kawakita, Hidetaka: Efficient separation of phycocyanin of Nostoc commune by multistep diafiltration using ultra-filtration membrane modules. Bioprocess and Biosystems Engineering, č. 10, zv. 46, str. 1447 – 1456, 2023.
R. PaulenM. Fikar – Z. Kovacs – P. Czermak: Process optimization of diafiltration with time-dependent water adding for albumin production. Chemical Engineering and Processing: Process Intensification, č. 8, zv. 50, str. 815–821, 2011.
  • Počet citácií       13
  • Buonomenna, M. G.: Membrane processes for a sustainable industrial growth. RSC Advances, č. 17, zv. 3, str. 5694-5740, 2013.
  • Zhao, L. – Zhao, H. – Nguyen, P. – Li, A. – Jiang, L. – Xia, Q. – Rong, Y. – Qiu, Y. – Zhou, J.: Separation performance of multi-components solution by membrane technology in continual diafiltration mode. Desalination, zv. 322, str. 113-120, 2013.
  • Wang, L. – Wang, L. – Xing, W. – Xu, N.: Time-optimal diafiltration processes for Cephalosporin C separated from fermentation broth under constant yield and constant concentration. Separation and Purification Technology, zv. 122, str. 256-261, 2014.
  • Wang, Longyao – Yang, Zhengdong – Wang, Lan – Zhu, Rongshun: Minimizing the operation time for continuous feed diafiltration processes under constant concentration ratio. Desalination, zv. 346, str. 100-106, 2014.
  • Foley, G.: When should batch ultrafiltration be stopped to maximise profit in the recovery of a non-rejected solute?. Journal of Food Engineering, zv. 153, str. 8-11, 2014.
  • Foley,G.: Membrane filtration: A problem solving approach with MATLAB, str. 1-327, 2011.
  • Deb, Tanmoy Kanti: Implementation of membrane processes for improvement of the detection of food contaminants, Universidade Nova de Lisboa, 2015.
  • Ambrosi, Alan – Al-Furaiji, Mustafa – McCutcheon, Jeffrey R. – Cardozo, Nilo Sergio M. – Tessaro, Isabel Cristina: Transport of Components in the Separation of Ethanol from Aqueous Dilute Solutions by Forward Osmosis. Industrial & Engineering Chemistry Research, č. 8, zv. 57, str. 2967-2975, 2018.
  • Qiu, Y.-R. – Tang, S.-Y. – Xu, J.-Y.: Pretreatment of poly (acrylic acid) sodium by continuous diafiltration and time revolution of filtration potential [连续渗滤法预处理聚丙烯酸钠以及过滤电势随时间的变化]. Journal of Central South University, č. 3, zv. 26, str. 577-586, 2019.
  • Pirrung, S.M. – Berends, C. – Backx, A.H. – van Beckhoven, R.F.W.C. – Eppink, M.H.M. – Ottens, M.: Model-based optimization of integrated purification sequences for biopharmaceuticals. Chemical Engineering Science: X, č. 100025, zv. 3, 2019.
  • Varzakas, Theodoros: Centrifugation-Filtration. V Food Engineering Handbook, Food Process Engineering, str. 61-130, 2015.
  • Briesen, H. – Kuhn, M.: Optimizing the axial resistance profile of submerged hollow fiber membranes. Processes, č. 1, zv. 9, str. 1-13, 2021.
  • Worsham, Robert D. – Thomas, Vaughan – Farid, Suzanne S.: Impact of ethanol on continuous inline diafiltration of liposomal drug products. Biotechnology Journal, 2023.
R. Paulen – G. Foley – M. Fikar – Z. Kovacs – P. Czermak: Minimizing the process time for ultrafiltration/diafiltration under gel polarization conditions. Journal of Membrane Science, č. 1-2, zv. 380, str. 148–154, 2011.
  • Počet citácií       15
  • Field,R.: Diafiltration under condition of quasi-constant membrane surface concentration. Journal of Membrane Science, č. 1-2, zv. 383, str. 301-302, 2011.
  • Wang, L. – Wang, L.: Estimation and control of process time for membrane separation of cephalosporin C from fermentation broth. Huagong Xuebao/CIESC Journal, č. 9, zv. 64, str. 3256-3261, 2013.
  • Wang, L. – Wang, L. – Xing, W. – Xu, N.: Time-optimal diafiltration processes for Cephalosporin C separated from fermentation broth under constant yield and constant concentration. Separation and Purification Technology, zv. 122, str. 256-261, 2014.
  • Prudêncio, E. S. – Müller, C. M. O. – Fritzen-Freire, C. B. – Amboni, R. D. M. C. – Petrus, J. C. C.: Effect of whey nanofiltration process combined with diafiltration on the rheological and physicochemical properties of ricotta cheese. Food Research International, zv. 56, str. 92-99, 2014.
  • Lorenzi, R. – Raghunath, B. – Yanglin, M. – Karen, C.: Simulation of Process Performance on Contaminant Removal Using Constant and Non-Constant Volume Diafiltration Modeling.. BioProcessing Journal, č. 2, zv. 15, str. 37, 2016.
  • Zhu, Yong – Bai, Zhishan – Luo, Wenqiang – Wang, Bingjie – Zhai, Linlin: A facile ion imprinted synthesis of selective biosorbent for Cu2+ via microfluidic technology. Journal of Chemical Technology and Biotechnology, č. 8, zv. 92, str. 2009-2022, 2017.
  • Saltik, M. Bahadir – Ozkan, Leyla – Jacobs, Marc – van der Padt, Albert: Dynamic modeling of ultrafiltration membranes for whey separation processes. Computers & Chemical Engineering, zv. 99, str. 280-295, 2017.
  • Gautério,G. V. – Malta,D. S. – Reginatto,L. – Feltrin,A. C. P. – Garda-Buffon,J. – Kalil,S. J.: Use of partially purified peroxidase of agricultural by-product rice bran in deoxynivalenol reduction. Journal of Chemical Technology and Biotechnology, č. 8, zv. 92, str. 1998-2008, 2017.
  • Wen-qiong,W. – Yun-chao,W. – Xiao-feng,Z. – Rui-xia,G. – Mao-lin,L.: Whey protein membrane processing methods and membrane fouling mechanism analysis. Food Chemistry, zv. 289, str. 468-481, 2019.
  • Pirrung, S.M. – Berends, C. – Backx, A.H. – van Beckhoven, R.F.W.C. – Eppink, M.H.M. – Ottens, M.: Model-based optimization of integrated purification sequences for biopharmaceuticals. Chemical Engineering Science: X, č. 100025, zv. 3, 2019.
  • Silveira, Nauro – Silvestre, Wendel Paulo – Baldasso, Camila – Medeiros Cardozo, Nilo Sergio – Tessaro, Isabel Cristina – Vanin, Ana Paula: Ultrafiltration and diafiltration modeling for improved whey protein purification. Separation Science and Technology, 2022.
  • Rathore, A.S. – Thori, S. – Thakur, G.: Implementing PAT for single-pass tangential flow ultrafiltration for continuous manufacturing of monoclonal antibodies. Journal of Membrane Science, zv. 613, str. 118492, 2020.
  • Qi, T. – Da, X. – Zhang, Y. – Chen, X. – Cui, Z. – Qiu, M. – Fan, Y.: Modeling and optimal operation of intermittent feed diafiltration for refining oligodextran using nanoporous ceramic membranes. Separation and Purification Technology, zv. 253, str. 117491, 2020.
  • Qi,T. – Yang,D. – Chen,X. – Qiu,M. – Fan,Y.: Rapid removal of lactose for low-lactose milk by ceramic membranes. Separation and Purification Technology, zv. 289, str. 120601, 2022.
  • Schmitz, Fabian – Kruse, Thomas – Minceva, Mirjana – Kampmann, Markus: Integrated double flow-through purification of monoclonal antibodies using membrane adsorbers and single-pass tangential flow filtration. Biochemical Engineering Journal, zv. 195, str. 108913, 2023.
R. PaulenM. Fikar – M. A. Latifi: Dynamic Optimization of a Polymerization Reactor. V 18th Mediterranean Conference on Control and Automation, Marrakech, Morocco, str. 733–738, 2010.
  • Počet citácií       4
  • Gil, I.D.: Modeling, Simulation, Dynamic Optimization and Control of a Semibatch Emulsion Polymerization Process, University of Lorraine, 2014.
  • Nacerodien, Mogamat Thaabit: Investigation of Polymer Grade Blending in Ziegler-Natta Catalysed Ethylene Polymerisation Systems, University of Cape Town, 2014.
  • Asdrúbal Antonio Ramírez Botero: Modeling, simulation, dynamic optimization and control of aplasma assisted reactive evaporation process forpreparationof Zinc Oxide (ZnO) thin films, Universidad Nacional de Colombia, 2020.
  • Herrera, Andres A. – Raba, Bibiana – Rodriguez, Gerardo – Gil, Ivan D.: Dynamic optimization and experimental validation of a pilot scale emulsion polymerization reactor. Chemical Engineering and Processing-process Intensification, zv. 144, str. UNSP 107635, 2019.
R. PaulenM. Fikar – M. A. Latifi: Dynamic Optimization of a Hybrid System: Emulsion Polymerization Reaction. Journal of Cybernetics and Informatics, zv. 10, str. 31–40, 2010.
  • Počet citácií       2
  • Gil, I.D. – Vargas, J.C. – Corriou, J.P.: Optimal nonlinear control of an industrial emulsion polymerization reactor. Chemical Engineering Research and Design, č. Supplment C, zv. 111, str. 63-82, 2016.
  • Gil, I.D.: Modeling, Simulation, Dynamic Optimization and Control of a Semibatch Emulsion Polymerization Process, University of Lorraine, 2014.
R. PaulenM. Fikar – M. Čižniar – M. A. Latifi: Global Optimization for Parameter Estimation of Dynamic Systems. AT&P Journal Plus, č. 2, str. 71–78, 2009.
  • Počet citácií       1
  • Bostik, Josef – Kukal, Jaromir – Macek, Karel: On Reinforcement Learning in Optimization Heuristics and Optimal Method Switching. V 16th International Conference on Soft Computing Mendel 2010, str. 22-28, 2010.
Facebook / Youtube

Facebook / Youtube

RSS