-
Celkový počet citácií
506
- Kappatou, Chrysoula D. – Odgers, James – García-Muñoz, Salvador – Misener, Ruth: An Optimization Approach Coupling Preprocessing with Model Regression for Enhanced Chemometrics. Industrial and Engineering Chemistry Research, 2022.
- Orihuela, Luis: Comparison of the Guaranteed State Estimator and the Zonotopic Kalman Filter for Linear Time-Variant Systems. IEEE Control Systems Letters, zv. 7, str. 1512-1517, 2023.
- Fleitmann,L. – Pyschik,J. – Wolff,L. – Schilling,J. – Bardow,A.: Optimal experimental design of physical property measurements for optimal chemical process simulations. Fluid Phase Equilibria, zv. 557, str. 113420, 2022.
- Lu, Q.: Molecular structure recognition by blob detection. RSC Advances, č. 57, zv. 11, str. 35879-35886, 2021.
- Wang,J. – Dowling,A. W.: Pyomo.DOE: An open-source package for model-based design of experiments in Python. AIChE Journal, 2022.
- Huang, Chunbing – Cattani, Federica – Galvanin, Federico: An optimal experimental design strategy for improving parameter estimation in stochastic models. Computers & Chemical Engineering, zv. 170, str. 108133, 2023.
- Carlos {de la Calle-Arroyo} – Mariano Amo-Salas – Jesús López-Fidalgo – Licesio J. Rodríguez-Aragón – Weng Kee Wong: A methodology to D-augment experimental designs. Chemometrics and Intelligent Laboratory Systems, zv. 237, str. 104822, 2023.
- Tian, H. – Cohen, R.Z. – Zhang, C. – Mei, Y.: Active learning-based multistage sequential decision-making model with application on common bile duct stone evaluation. Journal of Applied Statistics, č. 14, zv. 50, str. 2951-2969, 2023.
- Sanseverinatti, Carlos I. – Perdomo, Mariano M. – Clementi, Luis A. – Vega, Jorge R.: An Adaptive Soft Sensor for On-Line Monitoring the Mass Conversion in the Emulsion Copolymerization of the Continuous SBR Process. Macromolecular Reaction Engineering, 2023.
- Ikonen, Teemu J. – Bergman, Samuli – Corona, Francesco: A Bayesian inferential sensor for predicting the reactant concentration in an exothermic chemical process. Chemometrics and Intelligent Laboratory Systems, zv. 241, str. 104942, 2023.
- Shan, Baoming – Ma, Cuncheng – Niu, Chengqun – Xu, Qilei – Zhu, Zhaoyou – Wang, Yinglong – Zhang, Fangkun: Soft sensor model predictive control for azeotropic distillation of the separation of DIPE/IPA/water mixture. Journal of the Taiwan Institute of Chemical Engineers, zv. 152, 2023.
- Alvarado,I. – Krupa,P. – Limon,D. – Alamo,T.: Tractable robust MPC design based on nominal predictions. Journal of Process Control, zv. 111, str. 75-85, 2022.
- Shi, Y. – Zhang, K.: Advanced model predictive control framework for autonomous intelligent mechatronic systems: A tutorial overview and perspectives. Annual Reviews in Control, zv. 52, str. 170-196, 2021.
- Mowbray, M. – Petsagkourakis, P. – del Rio-Chanona, E.A. – Zhang, D.: Safe chance constrained reinforcement learning for batch process control. Computers and Chemical Engineering, zv. 157, str. 107630, 2022.
- Farajzadeh Devin,M. G. – Hosseini Sani,S. K.: Two-loop robust model predictive control with improved tube for industrial applications. International Journal of Systems Science, 2022.
- Parihar, Sushma – Shah, Pritesh – Sekhar, Ravi – Lagoo, Jui: Model Predictive Control and Its Role in Biomedical Therapeutic Automation: A Brief Review. Applied System Innovation, č. 6, zv. 5, str. 118, 2022.
- Bastos,G., Jr. – Franco,E.: Dynamic tube model predictive control for a class of soft manipulators with fluidic actuation. International Journal of Robust and Nonlinear Control, 2023.
- Schwenkel, Lukas – Koehler, Johannes – Mueller, Matthias A. A. – Allgoewer, Frank: Model Predictive Control for Linear Uncertain Systems Using Integral Quadratic Constraints. IEEE Transactions on Automatic Control, č. 1, zv. 68, str. 355-368, 2023.
- Sebghati, Ashkan – Esfahani, Mahyar Madani – Shamaghdari, Saeed: On the design of efficient optimal tube-based robust model predictive control: Quasi-H∞ approach. Iet Control Theory and Applications, č. 12, zv. 17, str. 1703-1719, 2023.
- Bjorvand, Simen – Jaschke, Johannes: Improving Primal Decomposition for Multistage MPC Using an Extended Newton Method. IEEE Control Systems Letters, zv. 7, str. 2677-2682, 2023.
- Zhang, Qiang – Liu, Ping – Chen, Yu – Deng, Quan – Tong, Angxin: Disturbance Observer-Based Terminal Sliding Mode Tracking Control for a Class of Nonlinear SISO Systems with Input Saturation. Processes, č. 7, zv. 11, 2023.
- Li, Yang – Vilathgamuwa, D. Mahinda – Quevedo, Daniel E. – Lee, Chih Feng – Zou, Changfu: Ensemble Nonlinear Model Predictive Control for Residential Solar Battery Energy Management. IEEE Transactions on Control Systems Technology, č. 5, zv. 31, str. 2188-2200, 2023.
- Janatian, Nima – Sharma, Roshan: A robust model predictive control with constraint modification for gas lift allocation optimization. Journal of Process Control, zv. 128, str. 102996, 2023.
- Zhou, Chengyu – Jia, Li – Zhou, Yang: Tube-based batch model predictive control for polystyrene polymerization reaction process. Asia-pacific Journal of Chemical Engineering, č. e2906, 2023.
- Kino-Oka,M. – Hayashi,Y. – A. Udugama,I. – Hirono,K. – Sugiyama,H.: A Dynamic and Probabilistic Design Space Determination Method for Mesenchymal Stem Cell Cultivation Processes. Industrial and Engineering Chemistry Research, č. 20, zv. 61, str. 7009 - 7019, 2022.
- Kaiya,Y. – Tamura,R. – Tsuda,K.: Understanding Chemical Processes with Entropic Sampling. Organic Process Research and Development, č. 12, zv. 26, str. 3276-3282, 2022.
- Udugama, Isuru A. – Badr, Sara – Hirono, Keita – Scholz, Benedikt X. – Hayashi, Yusuke – Kino-oka, Masahiro – Sugiyama, Hirokazu: The role of process systems engineering in applying quality by design (QbD) in mesenchymal stem cell production. Computers & Chemical Engineering, zv. 172, str. 108144, 2023.
- Thomas Oberleitner – Thomas Zahel – Christoph Herwig: A Method for Finding a Design Space as Linear Combinations of Parameter Ranges for Biopharmaceutical Development. V 33rd European Symposium on Computer Aided Process Engineering, str. 909-914, 2023.
C. E. Valero – M. Villanueva – B. Houska –
R. Paulen:
Set-Based State Estimation: A Polytopic Approach. Editor(i): Rolf Findeisen, Sandra Hirche, Klaus Janschek, Martin Mönnigmann, V
Preprints of the 21st IFAC World Congress (Virtual), Berlin, Germany, July 12-17, 2020, zv.
21, str. 11428–11433, 2020.
arXiv
- Mu, Bowen – Yang, Xuejiao – Shen, Kai – Scott, Joseph K.: Improved Interval Reachability Bounds for Nonlinear Discrete-Time Systems using an Efficient One-Dimensional Partitioning Method. V 2021 American Control Conference (ACC), str. 3664-3669, 2021.
- Ragot, José: Guaranteed consistency between measurements and parameter systems with correlated additive and multiplicative uncertainties. Complex Engineering Systems, zv. 2, str. 10, 2022.
- Dawoud, Mohammed M. – Liu, Changxin – Alanwar, Amr – Johansson, Karl H.: Differentially Private Set-Based Estimation Using Zonotopes. V 2023 European Control Conference, ECC, 2023.
S. Thangavel –
R. Paulen – S. Engell:
Dual multi-stage NMPC using sigma point principles. Editor(i): Rolf Findeisen, Sandra Hirche, Klaus Janschek, Martin Mönnigmann, V
Preprints of the 21st IFAC World Congress (Virtual), Berlin, Germany, July 12-17, 2020, zv.
21, str. 11394–11401, 2020.
arXiv
- Polcz, P. – Csutak, B. – Szederkényi, G.: Reconstruction of Epidemiological Data in Hungary Using Stochastic Model Predictive Control. Applied Sciences (Switzerland), č. 3, zv. 12, str. 1113, 2022.
- Panda, Atanu – Thirunavukarasu, Narayani – Panda, Rames C.: Predictive control scheme by integrating event-triggered mechanism and disturbance observer under actuator failure and sensor fault. Proceedings of the Institution of Mechanical Engineers Part I-journal of Systems and Control Engineering, 2023.
- Landgraf, Daniel – Voelz, Andreas – Berkel, Felix – Schmidt, Kevin – Specker, Thomas – Graichen, Knut: Probabilistic prediction methods for nonlinear systems with application to stochastic model predictive control. Annual Reviews in Control, č. 100905, zv. 56, 2023.
- Propson,T. – Jackson,B. E. – Koch,J. – Manchester,Z. – Schuster,D. I.: Robust Quantum Optimal Control with Trajectory Optimization. Physical Review Applied, č. 1, zv. 17, str. 014036, 2022.
- Polcz, P. – Csutak, B. – Szederkényi, G.: Reconstruction of Epidemiological Data in Hungary Using Stochastic Model Predictive Control. Applied Sciences (Switzerland), č. 3, zv. 12, str. 1113, 2022.
- Soloperto, Raffaele – Muller, Matthias A. – Allgower, Frank: Guaranteed Closed-Loop Learning in Model Predictive Control. IEEE Transactions on Automatic Control, č. 2, zv. 68, str. 991-1006, 2023.
- Casas, Carlos Andres Elorza – Valipour, Mahshad – Sandoval, Luis A. Ricardez: Multi-scenario and multi-stage robust NMPC with state estimation application on the Tennessee-Eastman process. Control Engineering Practice, zv. 139, str. 105635, 2023.
- Kaplan, Ido – Erew, Muhammad – Piasetzky, Yonatan – Goldstein, Moshe – Oz, Yaron – Suchowski, Haim: Segmented composite design of robust single-qubit quantum gates. Physical Review A, zv. 108, str. 042401, 2023.
- Bonzanini, A.D. – Paulson, J.A. – Makrygiorgos, G. – Mesbah, A.: Fast approximate learning-based multistage nonlinear model predictive control using Gaussian processes and deep neural networks. Computers and Chemical Engineering, str. 107174, 2021.
- Meng,F. – Shen,X. – Karimi,H. R.: Emerging methodologies in stability and optimization problems of learning-based nonlinear model predictive control: A survey. International Journal of Circuit Theory and Applications, č. 11, zv. 50, str. 4146-4170, 2022.
- Landgraf, Daniel – Voelz, Andreas – Berkel, Felix – Schmidt, Kevin – Specker, Thomas – Graichen, Knut: Probabilistic prediction methods for nonlinear systems with application to stochastic model predictive control. Annual Reviews in Control, č. 100905, zv. 56, 2023.
- Vandercammen, A. – Dessoy, S. – Sanders, M. – Pysik, A. – Geldhof, G. – Schenkendorf, R. – von Stosch, M. – Mariti, M. – Varsakelis, C.: Working within the design space: Do our static process characterization methods suffice?. Pharmaceutics, č. 6, zv. 12, str. 1-15, 2020.
- Granados-Ortiz, F.-J. – Ortega-Casanova, J.: Machine learning-aided design optimization of a mechanical micromixer. Physics of Fluids, č. 6, zv. 33, str. 063604, 2021.
- Demis, P. – Kucherenko, S. – Klymenko, O.V.: Design Space Approximation with Gaussian Processes. Computer Aided Chemical Engineering, zv. 50, str. 905-911, 2021.
- Jiang,S. -. – Papageorgiou,L. G. – Bogle,I. D. L. – Charitopoulos,V. M.: Investigating the Trade-Off between Design and Operational Flexibility in Continuous Manufacturing of Pharmaceutical Tablets: A Case Study of the Fluid Bed Dryer. Processes, č. 3, zv. 10, str. 454, 2022.
- Destro,F. – Barolo,M.: A review on the modernization of pharmaceutical development and manufacturing – Trends, perspectives, and the role of mathematical modeling. International journal of pharmaceutics, zv. 620, str. 121715, 2022.
- Destro, Francesco – Barolo, Massimiliano: A review on the modernization of pharmaceutical development and manufacturing - Trends, perspectives, and the role of mathematical modeling. INTERNATIONAL JOURNAL OF PHARMACEUTICS, zv. 620, str. 121715, 2022.
- Peterson, John J.: Response surfaces, blocking, and split plots: A predictive distribution case study. Quality Engineering, č. 1, zv. 35, str. 172-191, 2023.
- Saadeh,Q. – Naujok,P. – Wu,M. – Philipsen,V. – Thakare,D. – Scholze,F. – Buchholz,C. – Stadelhoff,C. – Wiesner,T. – Soltwisch,V.: Nested Sampling aided determination of tantalum optical constants in the EUV spectral range. Applied Optics, č. 33, zv. 61, str. 10032-10042, 2022.
- Huayu Tian – Jnana Sai Jagana – Qi Zhang – Marianthi Ierapetritou: Feasibility/Flexibility-based optimization for process design and operations. Computers & Chemical Engineering, zv. 180, str. 108461, 2024.
- Steven Sachio – Cleo Kontoravdi – Maria M. Papathanasiou: A model-based approach towards accelerated process development: A case study on chromatography. Chemical Engineering Research and Design, zv. 197, str. 800-820, 2023.
- Baltodano, Eleaneth – Hanley, Georgia – Vargas, Rolando – Ramírez, Nils – Castillo, Luis: Design of Experiments Assessment for the Determination of Moisture Content in Five Herbal Raw Materials Contained in Tea Products. Borneo Journal of Pharmacy, č. 1, zv. 3, 2020.
- Himmelsbach, M. – Kroll, A.: On Optimal Test Signal Design and Parameter Identification Schemes for Dynamic Takagi-Sugeno Fuzzy Models Using the Fisher Information Matrix. International Journal of Fuzzy Systems, 2021.
- Reddy, R.S. – Arepally, D. – Datta, A.K.: Inverse problems in food engineering: A review. Journal of Food Engineering, zv. 319, str. 110909, 2022.
- Zhang,L. – Li,P. – Chen,L. – Xia,S. – Kong,R. – Ge,Y. – Feng,H.: Entropy generation rate minimization for steam methane reforming reactor heated by molten salt. Energy Reports, zv. 6, str. 685-697, 2020.
- You, F. – Zhang, S. – Jia, R.: Transfer learning for end-product quality prediction of batch processes using domain-adaption joint-Y PLS. Computers and Chemical Engineering, č. 106943, zv. 140, 2020.
- Palma-Flores, Oscar – Andres-Martinez, Oswaldo – Ricardez-Sandoval, Luis A.: Optimal control and the Pontryagin's principle in chemical engineering: History, theory, and challenges. AICHE JOURNAL, č. 8, zv. 68, str. e17777, 2022.
- Wang,Z. -. – Li,X. – Wang,Y. – Ji,Z. -.: Hyperparallel space set-membership filtering based state estimation algorithm for nonlinear system. Kongzhi yu Juece/Control and Decision, č. 9, zv. 37, str. 2287-2295, 2022.
- Wang,Z. -. – Cheng,L. – Wang,Y. – Ji,Z. -.: Orthometric hyperparallel spatial directional expansion filtering based fault diagnosis method. Kongzhi yu Juece/Control and Decision, č. 12, zv. 37, str. 3223-3232, 2022.
- Wang, Zi-Yun – Zhang, Zi-Meng – Wang, Yan – Zhan, Ya-Cong – Ji, Zhi-Cheng: Nonlinear system state estimation based on axisymmetric box space filter under uncertain noise; [不确定噪声下基于轴对称盒空间滤波的非线性系统状态估计]. Kongzhi Lilun Yu Yingyong/control Theory and Applications, č. 5, zv. 40, str. 883 – 890, 2023.
- Bernardi, E. – Morato, M.M. – Mendes, P.R.C. – Normey-Rico, J.E. – Adam, E.J.: Fault-tolerant energy management for an industrial microgrid: A compact optimization method. International Journal of Electrical Power and Energy Systems, zv. 124, str. 106342, 2021.
- Scott,J. K. – Shen,K.: Exploiting nonlinear invariants and path constraints to achieve tighter reachable set enclosures using differential inequalities. Mathematics of Control, Signals, and Systems, č. 1, zv. 32, str. 101-127, 2020.
- Mishra, P.K. – Wang, T. – Gazzola, M. – Chowdhary, G.: Centralized model predictive control with distributed adaptation. V Proceedings of the IEEE Conference on Decision and Control, str. 697-703, 2020.
- Rauh, A. – Bourgois, A. – Jaulin, L.: Union and intersection operators for thick ellipsoid state enclosures: Application to bounded-error discrete-time state observer design. Algorithms, č. 3, zv. 14, str. 88, 2021.
- Mitsos, A. – Kevrekidis, I.G. – Mhamdi, A. – Caspari, A. – Hamacher, N.C. – Vaupel, Y.: Accelerating nonlinear model predictive control through machine learning. Journal of Process Control, zv. 92, str. 261-270, 2020.
- Thombre, M. – (Joyce) Yu, Z. – Jäschke, J. – Biegler, L.T.: Sensitivity-Assisted multistage nonlinear model predictive control: Robustness, stability and computational efficiency. Computers and Chemical Engineering, zv. 148, str. 107269, 2021.
- Yu, Zhou (Joyce) – Biegler, Lorenz T.: Sensitivity-assisted Robust Nonlinear Model Predictive Control with Scenario Generation. IFAC PAPERSONLINE, č. 2, zv. 53, str. 7204-7209, 2020.
- Andreev, A. – Nefedyev, Y. – Demina, N.: The Study of Dynamic Parameters of Corporate Graphic Stations Using Methods of Adaptive Regression Multi-Parameter Modeling. V 2020 IEEE East-West Design and Test Symposium, EWDTS 2020 - Proceedings, str. 9225025, 2020.
- Mäkiö, E. – Azmat, F. – Ahmad, B. – Harrison, R. – Colombo, A.W.: T-CHAT educational framework for teaching cyber-physical system engineering. European Journal of Engineering Education, 2021.
- Hernandez-de-Menendez, M. – Escobar Díaz, C.A. – Morales-Menendez, R.: Engineering education for smart 4.0 technology: a review. International Journal on Interactive Design and Manufacturing, č. 3, zv. 14, str. 789-803, 2020.
- Francisco, R. – de Freitas Rocha Loures, E. – Santos, E.A.P. – Deschamps, F.: Working in the 4.0 Era: An Ontology for Competence Management in the Fourth Industrial Revolution. V Springer Proceedings in Mathematics and Statistics, str. 491-502, 2020.
- Anatolijs Zabasta – Nadezda Kunicina – Oksana Nikiforova – Joan Peuteman – Alexander K. Fedotov – Alexander S. Fedotov – Andrii Hnatov: Chapter 11 - Development of industry oriented cross-domain study programs in cyber-physical systems for Belarusian and Ukrainian universities. V Multi-Paradigm Modelling Approaches for Cyber-Physical Systems, Editor(i): Bedir Tekinerdogan and Dominique Blouin and Hans Vangheluwe and Miguel Goulão and Paulo Carreira and Vasco Amaral, Academic Press, str. 271-292, 2021.
- Nefedyev, Y. – Mubarakshina, R. – Andreev, A. – Demina, N.: The study of geodynamic parameters on the basis of adaptive regression modeling. Studies in Systems, Decision and Control, zv. 338, str. 225-236, 2021.
- Nefedyev, Y. – Andreev, A. – Mubarakshina, R. – Demina, N. – Andreeva, Z.: The Use of Deterministic Mathematical Modeling for the Prediction of Dynamic Geophysical Processes. V 2021 IEEE East-West Design and Test Symposium, EWDTS 2021 - Proceedings, 2021.
- Li,Y.: Fractional differential equations in National Sports Training in Colleges and Universities. Applied Mathematics and Nonlinear Sciences, 2021.
- Kosvyra,A. – Filos,D. – Mountford,N. – Cusack,T. – Isomursu,M. – Chouvarda,I.: PhD courses and the intersectoral experience: A comprehensive survey. V International Conference on Higher Education Advances, str. 1131-1139, 2021.
- Roy,S. – Dong,Y. – Baber,L. – Ahn,B.: Classroom to Workplace: Knowledge and Skills Learned by Recently Hired Aerospace Engineers. Journal of Aerospace Information Systems, č. 4, zv. 19, str. 317-329, 2022.
- Virmani,N. – Salve,U. R.: Analysing key social implications of implementation of Industry 4.0 in manufacturing industries. International Journal of Process Management and Benchmarking, č. 3, zv. 12, str. 277-299, 2022.
- Aydin,H. – Sertbaş,A.: CYBER SECURITY IN INDUSTRIAL CONTROL SYSTEMS (ICS): A SURVEY OF ROWHAMMER VULNERABILITY. Applied Computer Science, č. 2, zv. 18, str. 86-100, 2022.
- Paul,P. K.: Cyber physical systems, machine learning & deep learning-Emergence as an academic program and field for developing digital society, str. 67-83, 2022.
- Peele-Eady, Tryphenia B. – Reid, Tahira: What Difference Does Difference Make? A Case Study of Racial and Ethnic Diversity in a Summer Intensive Research Institute. 2023.
- Almacen, Rose Mary – Castilla, Delfa – Gonzales, Gamaliel – Gonzales, Roselyn – Costan, Felix – Costan, Emily – Enriquez, Lynne – Batoon, Jannen – Villarosa, Rica – Aro, Joerabell Lourdes – Evangelista, Samantha Shane – Maturan, Fatima – Wenceslao, Charldy – Atibing, Nadine May – Ocampo, Lanndon: Preparedness Indicator System for Education 4.0 with FUCOM and Rough Sets. Systems, č. 6, zv. 11, 2023.
- Wu, Xiaolong – Han, Honggui – Qiao, Junfei: Data-Driven Intelligent Warning Method for Membrane Fouling. IEEE Transactions on Neural Networks and Learning Systems, č. 8, zv. 32, str. 3318-3329, 2021.
- Wu, Xiao-Long – Han, Hong-Gui – Zhang, Hui-Juan – Qiao, Jun-Fei: Intelligent Warning of Membrane Fouling Based on Robust Deep Neural Network. International Journal of Fuzzy Systems, 2021.
- Trystram,G.: Automatic control of industrial food processes, str. 351-390, 2022.
- Piceno-Diaz, Ennio R. – Ricardez-Sandoval, Luis A. – Gutierrez-Limon, Miguel A. – Mendez-Acosta, Hugo O. – Puebla, Hector: Robust Nonlinear Model Predictive Control for Two-Stage Anaerobic Digesters. Industrial & Engineering Chemistry Research, č. 52, zv. 59, str. 22559-22572, 2020.
- Skogestad, S. – Krishnamoorthy, D. – Jaschke, J.: Multistage model predictive control with online scenario tree update using recursive Bayesian weighting. V 2019 18th European Control Conference, ECC 2019, str. 1443-1448, 2019.
- Dyro,R. – Harrison,J. – Sharma,A. – Pavone,M.: Particle MPC for Uncertain and Learning-Based Control. V IEEE International Conference on Intelligent Robots and Systems, str. 7127-7134, 2021.
- Mitrovic, A. – Clayton, G.M. – Leang, K.K.: Analysis and experimental comparison of range-based control for dual-stage nanopositioners. Mechatronics, č. 102371, zv. 69, 2020.
- Hewing, Lukas – Wabersich, Kim P. – Menner, Marcel – Zeilinger, Melanie N.: Learning-Based Model Predictive Control: Toward Safe Learning in Control. V Annual Review of Control, Robotics, and Autonomous Systems, Vol 3, 2020, str. 269-296, 2020.
- Walter Kähm: Thermal stability criteria embedded in advanced control systems for batch process intensification, University of Cambridge, University of Cambridge, 2019.
- Soloperto, Raffaele – Koehler, Johannes – Allgoewer, Frank: Augmenting MPC Schemes With Active Learning: Intuitive Tuning and Guaranteed Performance. IEEE Control Systems Letters, č. 3, zv. 4, str. 713-718, 2020.
- Varga, T. – Nagy, L. – Kummer, A.: NMPC-based control scheme for a semi-batch reactor under parameter uncertainty. Computers and Chemical Engineering, zv. 141, str. 106998, 2020.
- Koehler, Johannes – Koetting, Peter – Soloperto, Raffaele – Allgoewer, Frank – Mueller, Matthias A.: A robust adaptive model predictive control framework for nonlinear uncertain systems. International Journal of Robust and Nonlinear Control, 2020.
- Kummer, A. – Nagy, L. – Varga, T.: NMPC based Temperature Control in Fed-batch Reactor to Avoid Thermal Runaway. Computer Aided Chemical Engineering, zv. 48, str. 1087-1092, 2020.
- Hu, J. – Zheng, S. – Liu, X. – Deng, J. – Wang, M. – Yan, F.: Optimizing the fault diagnosis and fault-tolerant control of selective catalytic reduction hydrothermal aging using the Unscented Kalman Filter observer. Fuel, zv. 288, str. 119827, 2021.
- Yoo, H. – Kim, B. – Kim, J.W. – Lee, J.H.: Reinforcement learning based optimal control of batch processes using Monte-Carlo deep deterministic policy gradient with phase segmentation. Computers and Chemical Engineering, zv. 144, str. 107133, 2021.
- Arcari, Elena – Hewing, Lukas – Zeilinger, Melanie N.: An Approximate Dynamic Programming Approach for Dual Stochastic Model Predictive Control. Ifac Papersonline, č. 2, zv. 53, str. 8105-8111, 2020.
- AitSahed, Oussama – Kara, Kamel – Benrabah, Mohamed – Hadjili, Mohamed Laid: Constrained Nonlinear Predictive Control Using Neural Networks and Teaching-Learning-Based Optimization. Journal of Control Automation and Electrical Systems, č. 5, zv. 32, str. 1228 - 1243, 2021.
- Mappas, V. – Gangadharan, N. – Espaas, T. – Conejeros, R. – Ismaili, R.A. – Adloor, S.D. – Kähm, W. – Vassiliadis, V.S. – Nolasco, E. – Scott, F. – Zhang, Q.: Optimal control in chemical engineering: Past, present and future. Computers and Chemical Engineering, zv. 155, str. 107528, 2021.
- Kim,S. – Oshima,M. – Sotowa,K. -. – Shardt,Y. A. W.: Effective Re-identification of a Multivariate Process under Model Predictive Control Using Information from Plant-Model Mismatch Detection, zv. 49, 2022.
- Ren, R. – Zou, Y.-Y. – Li, S.-Y.: Enhanced active learning for model-based predictive control with safety guarantees [具有安全性保证的基于增强主动学习的模型预测控制]. Kongzhi Lilun Yu Yingyong/Control Theory and Applications, č. 11, zv. 38, str. 1735-1742, 2021.
- Chen,X. -. – Sun,J. -. – Zhang,H. -.: Multi-stage nonlinear model predictive polymerization reaction control with online scenario update. Kongzhi Lilun Yu Yingyong/Control Theory and Applications, č. 4, zv. 39, str. 770-776, 2022.
- Melatti, Igor – Mari, Federico – Mancini, Toni – Prodanovic, Milan – Tronci, Enrico: A Two-Layer Near-Optimal Strategy for Substation Constraint Management via Home Batteries. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, č. 8, zv. 69, str. 8566-8578, 2022.
- Jeong,C. – Sharma,R.: Stochastic MPC for Optimal Operation of Hydropower Station under Uncertainty. V IFAC-PapersOnLine, str. 155-160, 2022.
- Sun, Jing-Gao – Chen, Xian-Feng – Su, Guang-Hao – Wang, Meng – Pan, Hong-Guang: Multi-stage Nonlinear Model Predictive Control with Online Scenario Update for Semi-batch Polymerization Processes. International Journal of Control Automation and Systems, č. 10, zv. 20, str. 3187-3197, 2022.
- Arana-Jimenez, Manuel – Medvedev, Alexander V. – Chzhan, Ekaterina: A Nonparametric Dual Control Algorithm of Multidimensional Objects with Interval-Valued Observations. Axioms, č. 2, zv. 12, str. 193, 2023.
- Soloperto, Raffaele – Mueller, Matthias A. – Allgoewer, Frank: Guaranteed Closed-Loop Learning in Model Predictive Control. IEEE Transactions on Automatic Control, č. 2, zv. 68, str. 991-1006, 2023.
- Casas, Carlos Andres Elorza – Valipour, Mahshad – Sandoval, Luis A. Ricardez: Multi-scenario and multi-stage robust NMPC with state estimation application on the Tennessee-Eastman process. Control Engineering Practice, zv. 139, str. 105635, 2023.
- Byun, Ha-Eun – Kim, Boeun – Lee, Jay H.: Embedding active learning in batch-to-batch optimization using reinforcement learning. Automatica, zv. 157, str. 111260, 2023.
- Burggräf, Peter – Steinberg, Fabian – Nettesheim, Philipp – Vedder, Marian – Kolter, Gerald: Cyber-Physical Optimization of Production Processes Using Two AIs: A Robot-Guided MAG Welding Use-Case. V Procedia CIRP, str. 885 – 889, 2023.
- Jung, Falco – Caspari, Adrian – Mhamdi, Adel – Mitsos, Alexander: Set-Membership Parameter Estimation: Improved Understanding of Microgel Polymerization. Ifac Papersonline, č. 1, zv. 52, str. 580-585, 2019.
- Walz, Olga – Djelassi, Hatim – Mitsos, Alexander: Optimal experimental design for optimal process design: A trilevel optimization formulation. Aiche Journal, č. 1, zv. 66, str. e16788, 2020.
- Krichen, E. – Rapaport, A. – Fouilland, E.: About frame estimation of growth functions and robust prediction in bioprocess modeling. Journal of Process Control, zv. 85, str. 121-135, 2020.
- Zhao, Y. – Wang, N. – Wei, D.: Optimal gain processing method of heterogeneous noises based on Kalman filtering framework and its application [卡尔曼滤波框架下优化增益异类噪声处理方法及其应用]. Guofang Keji Daxue Xuebao/Journal of National University of Defense Technology, č. 2, zv. 43, str. 11-18, 2021.
- Li, Wenyu – Hegde, Arun – Oreluk, James – Packard, Andrew – Frenklach, Michael: Representing Model Discrepancy in Bound-to-Bound Data Collaboration. Siam-asa Journal on Uncertainty Quantification, č. 1, zv. 9, str. 231-259, 2021.
- Petsagkourakis, P. – Galvanin, F.: Safe model-based design of experiments using Gaussian processes. Computers and Chemical Engineering, zv. 151, str. 107339, 2021.
- Ronzani, Daniele – Gillis, Joris – Pipeleers, Goele – Swevers, Jan: ECOset-ILC: an Iterative Learning Control Approach with Set-membership Uncertainty. V 2022 IEEE 17th International Conference on Advanced Motion Control (AMC), str. 68-75, 2022.
- Liu, Xin – Wang, Chen – Han, Guangjie: LPV Time-Delay System Identification and Its Application to the Centralized Heat-Supply System. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, zv. 71, str. 3507111, 2022.
- Liu, Z. – Wang, Z. – Wang, Y. – Ji, Z.: Optimal Zonotopic Kalman Filter-based State Estimation and Fault-diagnosis Algorithm for Linear Discrete-time System with Time Delay. International Journal of Control, Automation and Systems, 2022.
- Yadav, Swati – Angira, Rakesh: Parameter estimation in non-linear chemical processes: an opposite point-based differential evolution (OPDE) approach. Chemical Product and Process Modeling, 2023.
- Hanema,J. – Lazar,M. – Tóth,R.: Heterogeneously parameterized tube model predictive control for LPV systems. Automatica, zv. 111, 2020.
- Peschke, Tobias – Görges, Daniel: Sequential Multi-Stage and Tube-based Robust MPC for Constrained Linear Systems with Multiplicative Uncertainty. V 2021 American Control Conference (ACC), str. 3378-3383, 2021.
- Jeong, Changhun – Furenes, Beathe – Sharma, Roshan: Implementation of simplified sequential stochastic model predictive control for operation of hydropower system under uncertainty. Computers & Chemical Engineering, č. 108409, zv. 179, str. 108409, 2023.
- An, Zhuoer – Liu, Xinghua – Wang, Peng: Robust Tube MPC with Multi-step Tracking for Uncertain Constrained Linear Systems. V 2023 IEEE 18th Conference on Industrial Electronics and Applications (ICIEA), str. 856-861, 2023.
- L. {Jirsa} – A. {Quinn} – L. K. {Pavelková}: Bayesian Filtering for States Uniformly Distributed on a Parallelotopic Support. V 2019 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT), str. 1-6, 2019.
- E.K. Kostousova: On polyhedral estimation of reachable sets in the “extended” space for discrete-time systems with uncertain matrices and integral constraints. Trudy Instituta Matematiki i Mekhaniki URO RAN, č. 1, zv. 26, str. 141–155, 2020.
- Kostousova, E. K.: On Polyhedral Estimation of Reachable Sets in the “Extended” Space for Discrete-Time Systems with Uncertain Matrices and Integral Constraints. Proceedings of the Steklov Institute of Mathematics, č. S140, zv. 313, str. S154, 2021.
- Wang,Z. – Li,X. – Wang,Y.: Set-membership filtering based Bi-directional DC-DC converter state estimation algorithm for lithium battery formation. V Proceeding - 2021 China Automation Congress, CAC 2021, str. 3660-3665, 2021.
- Zhang, Shuai – Wang, Zi-Yun – Wang, Yan – Ji, Zhi-Cheng: A Novel Set-valued Observer Based State Estimation Algorithm for Nonlinear Systems. INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, č. 4, zv. 20, str. 1266-1274, 2022.
- Wang,Z. -. – Li,X. – Wang,Y. – Ji,Z. -.: Hyperparallel space set-membership filtering based state estimation algorithm for nonlinear system. Kongzhi yu Juece/Control and Decision, č. 9, zv. 37, str. 2287-2295, 2022.
- Wang,Z. -. – Cheng,L. – Wang,Y. – Ji,Z. -.: Orthometric hyperparallel spatial directional expansion filtering based fault diagnosis method. Kongzhi yu Juece/Control and Decision, č. 12, zv. 37, str. 3223-3232, 2022.
- Pavelková, Lenka Kuklišová: Bayesian State Estimation Using Constrained Zonotopes. V Proceedings of the International Conference on Informatics in Control, Automation and Robotics, str. 189 – 194, 2023.
- Melnikova, Elena – Bogdanova, Ekaterina – Paveleva, Daria: The Research of Whey Permeate Mineral Profile at Different Stages of Membrane Filtration. Potravinarstvo Slovak Journal of Food Sciences, zv. 17, str. 748 – 758, 2023.
- Melnikova, Elena Ivanovna – Bogdanova, Ekaterina Viktorovna – Paveleva, Daria Anatolyevna: Whey Permeate Mineral Profile at Various Stages of Membrane Filtration; [مشخصات مواد معدنی تراویده آب پنیر در مراحل گوناگون تصفیه غشایی]. Applied Food Biotechnology, č. 4, zv. 10, str. 223 – 231, 2023.
- Walz, Olga – Djelassi, Hatim – Mitsos, Alexander: Optimal experimental design for optimal process design: A trilevel optimization formulation. Aiche Journal, č. 1, zv. 66, str. e16788, 2020.
- Duarte, Belmiro P. M. – Atkinson, Anthony C. – Granjo, Jose F. O. – Oliveira, Nuno M. C.: A model-based framework assisting the design of vapor-liquid equilibrium experimental plans. Computers & Chemical Engineering, zv. 145, str. 107168, 2021.
- Galembeck, Fernando: Synergy in food, energy and advanced materials production from biomass. Pure and Applied Chemistry, č. 1, zv. 90, str. 109-119, 2018.
- Budman,H. M. – Hille,R.: Simultaneous identification and optimization of biochemical processes under model-plant mismatch using output uncertainty bounds. Computers and Chemical Engineering, zv. 113, str. 125-138, 2018.
- Walz, Olga – Djelassi, Hatim – Caspari, Adrian – Mitsos, Alexander: Bounded-error optimal experimental design via global solution of constrained min-max program. Computers & Chemical Engineering, zv. 111, str. 92-101, 2018.
- Rubin Hille: Run-to-Run Optimization of Biochemical Batch Processes in the Presence of Model-Plant Mismatch, University of Waterloo, University of Waterloo, 2018.
- Quaglio,M. – Pankajakshan,A. – Galvanin,F.: Experimentally Driven Guaranteed Parameter Estimation: a Way to Speed up Model-Based Design of Experiments Techniques, zv. 43, 2018.
- Jung,F. – Mhamdi,A. – Mitsos,A.: Constraints for Set-Membership Parameter Estimation, zv. 44, 2018.
- Remli, Muhammad Akmal – Mohamad, Mohd Saberi – Deris, Safaai – Samah, Azurah A. – Omatu, Sigeru – Manuel Corchado, Juan: Cooperative enhanced scatter search with opposition-based learning schemes for parameter estimation in high dimensional kinetic models of biological systems. Expert Systems with Applications, zv. 116, str. 131-146, 2019.
- Kusumo,K. P. – Kuriyan,K. – Vaidyaraman,S. – García-Muñoz,S. – Shah,N. – Chachuat,B.: Risk mitigation in model-based experiment design: A continuous-effort approach to optimal campaigns. Computers and Chemical Engineering, zv. 159, str. 107680, 2022.
- Horn,G. – Gillis,J. – Andersson,J. A. E. – Diehl,M. – Rawlings,J. B.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation, č. 1, zv. 11, 2019.
- Jung, Falco – Caspari, Adrian – Mhamdi, Adel – Mitsos, Alexander: Set-Membership Parameter Estimation: Improved Understanding of Microgel Polymerization. Ifac Papersonline, č. 1, zv. 52, str. 580-585, 2019.
- Joy, Preet – Djelassi, Hatim – Mhamdi, Adel – Mitsos, Alexander: Optimization-based global structural identifiability. Computers & Chemical Engineering, zv. 128, str. 417-420, 2019.
- Jung, Falco – Janssen, Franca A. L. – Ksiazkiewicz, Agnieszka – Caspari, Adrian – Mhamdi, Adel – Pich, Andrij – Mitsos, Alexander: Identifiability Analysis and Parameter Estimation of Microgel Synthesis: A Set-Membership Approach. Industrial & Engineering Chemistry Research, č. 30, SI, zv. 58, str. 13675-13685, 2019.
- Jauberthie,C. – Denis-Vidal,L. – Kieffer,M.: Optimal experiment design for bounded-error estimation of nonlinear models. V Proceedings of the IEEE Conference on Decision and Control, str. 4147-4154, 2019.
- Walz, Olga – Djelassi, Hatim – Mitsos, Alexander: Optimal experimental design for optimal process design: A trilevel optimization formulation. Aiche Journal, č. 1, zv. 66, str. e16788, 2020.
- Bernard, A. – Besombes, G. – Dall’Olio, L. – Le Duigou, J. – Belkadi, F.: Knowledge-based platform for traceability and simulation monitoring applied to design of experiments process: an open source architecture. Journal of Engineering Design, č. 8-9, zv. 30, str. 311-335, 2019.
- Wang, Ke – Yue, Hong – Yu, Hui: Optimal Input Design for Reduction of Parameter Correlations. V 2018 24th IEEE International Conference on Automation and Computing (icac' 18), str. 406-411, 2018.
- Krichen, E. – Rapaport, A. – Fouilland, E.: About frame estimation of growth functions and robust prediction in bioprocess modeling. Journal of Process Control, zv. 85, str. 121-135, 2020.
- Novara, C. – Karimshoushtari, M.: Design of experiments for nonlinear system identification: A set membership approach. Automatica, č. 109036, zv. 119, 2020.
- Tobias Paul Ring: Effiziente Unsicherheitsquantifizierung in der Akustik mittels eines Multi-Modell-Verfahrens, Shaker (Verlag), Düren, zv. 2020, 2020.
- Kunna, M.A. – Kadir, T.A.A. – Remli, M.A. – Ali, N.M. – Moorthy, K. – Muhammad, N.: An enhanced segment particle swarm optimization algorithm for kinetic parameters estimation of the main metabolic model of Escherichia coli. Processes, č. 8, zv. 8, str. 963, 2020.
- Zhao, X. – Mu, X.: Evaluation method for storage life of computing devices under zero-failure data [无失效数据下计算装置贮存寿命评估方法]. Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics, č. 1, zv. 43, str. 272-278, 2021.
- Caspari, A. – Djelassi, H. – Mhamdi, A. – Biegler, L.T. – Mitsos, A.: Semi-infinite programming yields optimal disturbance model for offset-free nonlinear model predictive control. Journal of Process Control, zv. 101, str. 35-51, 2021.
- Petsagkourakis, P. – Galvanin, F.: Safe model-based design of experiments using Gaussian processes. Computers and Chemical Engineering, zv. 151, str. 107339, 2021.
- Ronzani, Daniele – Gillis, Joris – Pipeleers, Goele – Swevers, Jan: ECOset-ILC: an Iterative Learning Control Approach with Set-membership Uncertainty. V 2022 IEEE 17th International Conference on Advanced Motion Control (AMC), str. 68-75, 2022.
- Lam,N. N. – Docherty,P. D. – Murray,R.: Practical identifiability of parametrised models: A review of benefits and limitations of various approaches. Mathematics and Computers in Simulation, zv. 199, str. 202-216, 2022.
- Kusumo,K. P. – Kuriyan,K. – Vaidyaraman,S. – García Muñoz,S. – Shah,N. – Chachuat,B.: Probabilistic framework for optimal experimental campaigns in the presence of operational constraints. Reaction Chemistry and Engineering, č. 11, zv. 7, str. 2359-2374, 2022.
- Quilló,G. L. – Bhonsale,S. – Collas,A. – Xiouras,C. – Van Impe,J. F. M.: Iterative model-based optimal experimental design for mixture-process variable models to predict solubility. Chemical Engineering Research and Design, zv. 189, str. 768-780, 2023.
- Casas-Orozco, Daniel – Laky, Daniel – Mackey, Jaron – Reklaitis, Gintaras – Nagy, Zoltan: Reaction kinetics determination and uncertainty analysis for the synthesis of the cancer drug lomustine. Chemical Engineering Science, zv. 275, str. 118591, 2023.
- Lei, Chon Lok – Clerx, Michael – Gavaghan, David J. – Mirams, Gary R.: Model-driven optimal experimental design for calibrating cardiac electrophysiology models. Computer Methods and Programs in Biomedicine, zv. 240, str. 107690, 2023.
- Klychova, Guzaliya – Zakirova, Alsou – Safiullin, Ilnur – Zakirov, Zufar – Khusainov, Shaukat – Zakharova, Galina: Rational placement of grain production - the basis for ensuring food security. E3S Web Conf., zv. 175, str. 08013, 2020.
- Holters,L. – Bahl,B. – Hennen,M. – Bardow,A.: Playing stackelberg games for minimal cost for production and utilities. V ECOS 2018 - Proceedings of the 31st International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, 2018.
- Ji,Z. – Wang,Z. – Liu,Z. – Xu,G.: Weight Value Ellipsoid Based Estimation Algorithm with Finite Data Window. V Chinese Control Conference, CCC, str. 1632-1636, 2018.
- Wang, K. – Yue, H. – Yu, H.: Optimal input design for reduction of parameter correlations. V ICAC 2018 - 2018 24th IEEE International Conference on Automation and Computing: Improving Productivity through Automation and Computing, 2018.
- Bortz, M. – Asprion, N. – Oseledets, I. – Ryzhakov, G. – Karpov, G. – Vanaret, C. – Schwientek, J. – Seufert, P.: Two-phase approaches to optimal model-based design of experiments: how many experiments and which ones?. Computers and Chemical Engineering, zv. 146, str. 107218, 2021.
- Wang,M. – Admassu,H. – Gasmalla,M. A. A. – Hua,X. – Yang,R.: Preparation of high-purity lactulose through efficient recycling of catalyst sodium aluminate and nanofiltration: a pilot-scale purification. Journal of the science of food and agriculture, č. 14, zv. 98, str. 5352-5360, 2018.
- Al-Obaidi,M. A. – Alsarayreh,A. A. – Mujtaba,I. M. – Patel,R. – Al-Hroub,A. M.: Performance evaluation of reverse osmosis brackish water desalination plant with different recycled ratios of retentate. Computers and Chemical Engineering, zv. 135, str. 106729, 2020.
- Al-Hroub, A.M. – Al-Obaidi, M.A. – Alsarayreh, A.A. – Patel, R. – Mujtaba, I.M.: Performance Evaluation of Reverse Osmosis Brackish Water Desalination Plant with Different Recycled Ratios of Retentate. Computer Aided Chemical Engineering, zv. 46, str. 181-186, 2019.
- Andrade, Thalles Allan – Errico, Massimiliano – Christensen, Knud Villy: Implementation of Biodiesel Production Process Using Enzyme-Catalyzed Routes. V Process Systems Engineering for Biofuels Development, Editor(i): A. Bonilla‐Petriciolet and G.P. Rangaiah, Kapitola: 8. John Wiley & Sons, Ltd, str. 191-220, 2020.
- El-Ghzizel, Soufian – Zeggar, Hajar – Elazhar, Fatima – Tahaikt, Mustapha – Hafsi, Mahmoud – Elmidaoui, Azzedine – Taky, Mohamed: Brine recycling impact on nitrate removal and electrochemical disinfection performances: a case study of Sidi Taibi desalination plant. Desalination and Water Treatment, zv. 240, str. 63-74, 2021.
- Nogueira,I. B. R. – Fontes,R. M. – Ribeiro,A. M. – Pontes,K. V. – Embiruçu,M. – Martins,M. A. F.: A robustly model predictive control strategy applied in the control of a simulated industrial polyethylene polymerization process. Computers and Chemical Engineering, zv. 133, str. 106664, 2020.
- Barcelos, L. – Oliveira, R. – Possas, R. – Ott, L. – Ramos, F.: DISCO: Double Likelihood-free Inference Stochastic Control. V Proceedings - IEEE International Conference on Robotics and Automation, str. 10969-10975, 2020.
- de Castro, Bruno J. C. – Marciniuk Junior, Meloci – Giulietti, Marco – Bernardo, Andre: SUCROSE CRYSTALLIZATION: MODELING AND EVALUATION OF PRODUCTION RESPONSES TO TYPICAL PROCESS FLUCTUATIONS. Brazilian Journal of Chemical Engineering, č. 3, zv. 36, str. 1237-1253, 2019.
- Pohorilyi, Taras: Modeling of non-stationary processes heat and mass transfer according to the cellular model of sucrose mass crystallization. Ukrainian Food Journal, č. 1, zv. 12, 2023.
- Gorodecky, Vladimir – Semenikhin, Semen – Daisheva, Nailya – Kotlyarevskaya, Natalya – Fabritskaya, Alla: Identification of influential patterns of chemical treatment of sugar production thick juice and remelt syrups on the beet sugar quality. V BIO Web of Conferences, 2022.
- Predrag Milosavljevic: Real-Time Optimization of Interconnected Systems via Modifier Adaptation, with Application to Gas-Compressor Stations, ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE, 2018.
- Schneider, Rene – Milosavljevic, Predrag – Bonvin, Dominique: Distributed modifier-adaptation schemes for the real-time optimisation of uncertain interconnected systems. International Journal of Control, č. 5, zv. 92, str. 1123-1136, 2019.
- Estellés-Miguel,S. – Maheut,J. – Rius-Sorolla,G. – Garcia-Sabater,J. P.: Coordination mechanisms with mathematical programming models for decentralized decision-making: a literature review. Central European Journal of Operations Research, 2018.
- Carlo Valli: Distributed Optimization of a Gas-LiftedWells Network using Transient Measurements, Politecnico di Milano, 2019.
- Zhang,Q. – Allman,A.: Distributed cooperative industrial demand response. Journal of Process Control, zv. 86, str. 81-93, 2020.
- Achour, Saadi – Rahmoune, Abdelaziz – Ouchenane, Djamel – Alharbi, Asma – Boulaaras, Salah: Initialization of the difference of convex functions optimization algorithm for nonconvex quadratic problems. Filomat, č. 3, zv. 38, str. 1069 – 1083, 2024.
- Nogueira, R.A. – Bourdais, R. – Guéguen, H.: Detection and Mitigation of Corrupted Information in Distributed Model Predictive Control Based on Resource Allocation. V Conference on Control and Fault-Tolerant Systems, SysTol, str. 329-334, 2021.
- Walz, Olga – Djelassi, Hatim – Caspari, Adrian – Mitsos, Alexander: Bounded-error optimal experimental design via global solution of constrained min-max program. Computers & Chemical Engineering, zv. 111, str. 92-101, 2018.
- Abdelsalam, Y. – Subramanian, S. – Aboelnour, M. – Engell, S.: Adaptive tube-enhanced multi-stage nonlinear model predictive control. V IFAC-PapersOnLine, str. 212-218, 2021.
- Walz, Olga – Djelassi, Hatim – Caspari, Adrian – Mitsos, Alexander: Bounded-error optimal experimental design via global solution of constrained min-max program. Computers & Chemical Engineering, zv. 111, str. 92-101, 2018.
- Garcia-Sabater,J. P. – Estellés-Miguel,S. – Maheut,J. – Rius-Sorolla,G.: Coordination mechanisms with mathematical programming models for decentralized decision-making: a literature review. Central European Journal of Operations Research, 2018.
- Marchetti, Alejandro G. – Francois, Gregory – Faulwasser, Timm – Bonvin, Dominique: Modifier Adaptation for Real-Time Optimization-Methods and Applications. Processes, č. 4, zv. 4, 2016.
- Rius-Sorolla, Gregorio – Maheut, Julien – Estelles-Miguel, Sofia – Pedro Garcia-Sabater, Jose: Protocol: Systematic Literature Review on coordination mechanisms for the mathematical programming models in production planning with decentralized decision making. Wpom-working Papers on Operations Management, č. 2, zv. 8, str. 22-43, 2017.
- Skogestad, Sigurd – Dirza, Risvan – Krishnamoorthy, Dinesh: Optimal Resource Allocation using Distributed Feedback-based Real-time Optimization. Ifac Papersonline, č. 3, zv. 54, str. 706-711, 2021.
- Krishnamoorthy, D.: A distributed feedback-based online process optimization framework for optimal resource sharing. Journal of Process Control, zv. 97, str. 72-83, 2021.
- Dirza, R. – Skogestad, S. – Krishnamoorthy, D.: Real-time optimal resource allocation and constraint negotiation applied to a subsea oil production network. V Proceedings - SPE Annual Technical Conference and Exhibition, str. SPE-206102-MS, 2021.
- Leenders, L. – Hagedorn, D.F. – Djelassi, H. – Bardow, A. – Mitsos, A.: Bilevel optimization for joint scheduling of production and energy systems. Optimization and Engineering, 2022.
- Dirza,R. – Matias,J. – Skogestad,S. – Krishnamoorthy,D.: Experimental validation of distributed feedback-based real-time optimization in a gas-lifted oil well rig. Control Engineering Practice, zv. 126, str. 105253, 2022.
- Ramos-Teodoro,J. – Rodríguez,F.: Distributed energy production, control and management: a review of terminology and common approaches. RIAI - Revista Iberoamericana de Automatica e Informatica Industrial, č. 3, zv. 19, str. 233-253, 2022.
- Dirza, R. – Krishnamoorthy, D. – Skogestad, S.: Primal-dual Feedback-optimizing Control with Direct Constraint Control. V Computer Aided Chemical Engineering, str. 1153-1158, 2022.
- Dirza, R. – Skogestad, S.: Online Feedback-based Optimization with Multi-input Direct Constraint Control. V IFAC-PapersOnLine, str. 149-154, 2022.
- Dirza, Risvan – Rizwan, Md – Skogestad, Sigurd – Krishnamoorthy, Dinesh: Real-time Optimal Resource Allocation using Online Primal Decomposition. Ifac Papersonline, č. 21, zv. 55, str. 31-36, 2022.
- Yu, Ji\\\'an – Chen, Zhe: Study of Enterprise Resource Optimization Scheme from the Perspective of Knapsack Problems. Applied Mathematics and Nonlinear Sciences, 2023.
- Krishnamoorthy, Dinesh – Kungurtsev, Vyacheslav: A Sensitivity Assisted Alternating Directions Method of Multipliers for Distributed Optimization. V 2022 IEEE 61st Conference on Decision and Control (CDC), str. 295-300, 2022.
- Van Impe, J. – Telen, D. – Nimmegeers, P.: A sampling-based stochastic optimal experiment design formulation with application to the Williams-Otto reactor. IFAC-PapersOnLine, č. 1, zv. 50, str. 8716-8721, 2017.
- Walz, Olga – Djelassi, Hatim – Caspari, Adrian – Mitsos, Alexander: Bounded-error optimal experimental design via global solution of constrained min-max program. Computers & Chemical Engineering, zv. 111, str. 92-101, 2018.
- Jung,F. – Mhamdi,A. – Mitsos,A.: Constraints for Set-Membership Parameter Estimation, zv. 44, 2018.
- Chai,W. – Ji,H.: Set Membership Parameter Estimation for Nonlinear Systems Using Isomap. Dianzi Keji Daxue Xuebao/Journal of the University of Electronic Science and Technology of China, č. 2, zv. 47, str. 203-208, 2018.
- Jung, Falco – Caspari, Adrian – Mhamdi, Adel – Mitsos, Alexander: Set-Membership Parameter Estimation: Improved Understanding of Microgel Polymerization. Ifac Papersonline, č. 1, zv. 52, str. 580-585, 2019.
- Jung, Falco – Janssen, Franca A. L. – Ksiazkiewicz, Agnieszka – Caspari, Adrian – Mhamdi, Adel – Pich, Andrij – Mitsos, Alexander: Identifiability Analysis and Parameter Estimation of Microgel Synthesis: A Set-Membership Approach. Industrial & Engineering Chemistry Research, č. 30, SI, zv. 58, str. 13675-13685, 2019.
- Walz, Olga – Djelassi, Hatim – Mitsos, Alexander: Optimal experimental design for optimal process design: A trilevel optimization formulation. Aiche Journal, č. 1, zv. 66, str. e16788, 2020.
- Merhy, D. – Stoica Maniu, C. – Alamo, T. – Camacho, E.F. – Ben Chabane, S. – Chevet, T. – Makarov, M. – Hinostroza, I.: Guaranteed set-membership state estimation of an octorotor\\\'s position for radar applications. International Journal of Control, č. 11, zv. 93, str. 2760-2770, 2020.
- Merhy, D. – Stoica Maniu, C. – Alamo, T. – Camacho, E.F. – Ben Chabane, S. – Chevet, T. – Makarov, M. – Hinostroza, I.: Guaranteed set-membership state estimation of an octorotor's position for radar applications. International Journal of Control, č. 11, zv. 93, str. 2760-2770, 2020.
- Ballet, Gabriel – dit Sandretto, Julien Alexandre – Pribourg, Laurent – Fnadi, Mohamed: Guaranteed Identification of Viscous Friction for a Nonlinear Inverted Pendulum Through Interval Analysis and Set Inversion. V 2021 American Control Conference (ACC), str. 3920-3926, 2021.
- Ronzani, Daniele – Gillis, Joris – Pipeleers, Goele – Swevers, Jan: ECOset-ILC: an Iterative Learning Control Approach with Set-membership Uncertainty. V 2022 IEEE 17th International Conference on Advanced Motion Control (AMC), str. 68-75, 2022.
- El Wajeh, Mohammad – Jung, Falco – Bongartz, Dominik – Kappatou, Chrysoula Dimitra – Laleh, Narmin Ghaffari – Mitsos, Alexander – Kather, Jakob Nikolas: Can the Kuznetsov Model Replicate and Predict Cancer Growth in Humans?. Bulletin of Mathematical Biology, č. 11, zv. 84, str. 130, 2022.
- Bonvin, Dominique: Special Issue. Processes, č. 2, zv. 5, 2017.
- Qi,B. – Liu,B. – Zhang,S. – Liang,E. – Nie,Y. – Yuan,Z.: Mathematical Modeling for the Industrial 2-Mercaptobenzothiazole Batch Production Process. ACS Omega, č. 8, zv. 7, str. 6963-6977, 2021.
- Liang, Enzhi – Zhang, Song – Liu, Bin – Qi, Bujin – Nie, Yanpei – Yuan, Zhihong: Mathematical Modeling for the Industrial 2-Mercaptobenzothiazole Batch Production Process. ACS Omega, č. 8, zv. 7, str. 6963-6977, 2022.
- Oravec, Juraj – Bakosova, Monika – Trafczynski, Marian – Vasickaninova, Anna – Meszaros, Alajos – Markowski, Mariusz: Robust model predictive control and PID control of shell-and-tube heat exchangers. Energy, zv. 159, str. 1-10, 2018.
- Oravec,J. – Trafczynski,M. – Bakošová,M. – Markowski,M. – Mészáros,A. – Urbaniec,K.: Robust model predictive control of heat exchanger network in the presence of fouling, zv. 61, 2017.
- Kulesha,O. – Maletskyi,Z. – Ratnaweera,H.: State-of-the-art of membrane flux enhancement in membrane bioreactor. Cogent Engineering, č. 1, zv. 5, str. 1-30, 2018.
- Robles, Angel – Victoria Ruano, Maria – Charfi, Amine – Lesage, Geoffroy – Heran, Marc – Harmand, Jerome – Seco, Aurora – Steyer, Jean-Philippe – Batstone, Damien J. – Kim, Jeonghwan – Ferrer, Jose: A review on anaerobic membrane bioreactors (AnMBRs) focused on modelling and control aspects. Bioresource Technology, zv. 270, str. 612-626, 2018.
- Religa, Pawel – Kazmierczak, Bernadetta – Wojtkowska, Malgorzata – Rogos, Elzbieta: The influence of the nanofiltration method on the retentate composition after simulated chromium tannery wastewater concentration. Desalination and Water Treatment, zv. 128, str. 187-192, 2018.
- Rehman, Waheed Ur – Muhammad, Amir – Khan, Qaisar Ali – Younas, Mohammad – Rezakazemi, Mashallah: Pomegranate juice concentration using osmotic distillation with membrane contactor. Separation and Purification Technology, zv. 224, str. 481-489, 2019.
- Zhang, Bopeng – Kotsalis, Georgios – Khan, Jahanzeb – Xiong, Zhaoyang – Igou, Thomas – Lan, Guanghui – Chen, Yongsheng: Backwash sequence optimization of a pilot-scale ultrafiltration membrane system using data-driven modeling for parameter forecasting. Journal of Membrane Science, zv. 612, str. 118464, 2020.
- Gao, Y. – Yang, J. – Song, X. – Shen, D. – Wang, W. – Liu, K. – Jiang, J.: Experimental Study on Membrane Fouling and Cleaning in Hydrolytic Acidification -Membrane - Sequencing Batch Reactors Process. V IOP Conference Series: Earth and Environmental Science, str. 012102, 2020.
- Kuhn, M. – Briesen, H.: Optimizing the axial resistance profile of submerged hollow fiber membranes. Processes, č. 1, zv. 9, str. 1-13, 2021.
- Gao, Yulan – Yang, Jie – Song, Xinwei – Shen, Dongmei – Wang, Wanfen – Zhang, Weimin – Jiang, Jichao: An experimental study on the use of a sequencing-batch membrane bioreactor (SBMBR) for the treatment of mixed municipal wastewater. Water Science and Technology, č. 6, zv. 83, str. 1459-1469, 2021.
- Qalyoubi, L. – Al-Othman, A. – Al-Asheh, S.: Removal of ciprofloxacin antibiotic pollutants from wastewater using nano-composite adsorptive membranes. Environmental Research, č. 114182, zv. 215, 2022.
- Nawaz,A. – Singh Arora,A. – Yun,C. M. – Lee,J. J. – Lee,M.: Development of Smart AnAmmOx System and Its Agile Operation and Decision Support for Pilot-Scale WWTP, str. 423-454, 2021.
- Jeong,S. – Kim,D. – Lee,J. H.: Modeling and Simulation of Autothermal Reforming Reactor of Diesel over Ni-based Catalyst in Solid Oxide Fuel Cell based Auxiliary Power Unit System, zv. 44, 2018.
- McCarthy, W.P. – Blais, H.N. – O'Callaghan, T.F. – Hossain, M. – Moloney, M. – Danaher, M. – O'Connor, C. – Tobin, J.T.: Application of nanofiltration for the removal of chlorate from skim milk. International Dairy Journal, zv. 128, str. 105321, 2022.
- Park, Jungsu – Cayetano, Roent Dune A. – Kwon, Yeelyung – Kim, Gi-Beom – Jo, Yura – Kim, Sang-Hyoun: Improved sludge anaerobic digestion capacity by dynamic membrane and alkaline-thermal pretreatment: Long-term continuous operation and techno-economic analysis. Chemical Engineering Journal, zv. 474, str. 145735, 2023.
- Abuhantash, F. – Hegab, H.M. – Aljundi, I.H. – Hasan, S.W.: Synergistic design of polylactic acid/functionalized multi-walled carbon nanotubes composite membrane for enhanced oil-water separation. Journal of Environmental Chemical Engineering, č. 6, zv. 11, 2023.
- Krewer, U. – Scholl, S. – Rehbein, M. – Xie, X. – Schenkendorf, R.: The impact of global sensitivities and design measures in model-based optimal experimental design. Processes, č. 4, zv. 6, 2018.
- Nawaz, Alam – Saxena, Nikita – Arora, Amarpreet Singh – Yun, Choa Mun – Lee, Moonyong: Auto-Tuning of Identified Highly Sensitive Parameters for ANAMMOX System: Advanced Modeling Approach. IEEE Transactions on Industrial Informatics, č. 11, zv. 17, str. 7238-7245, 2021.
- Rincón Moruno, Sergi: Vertical trajectory optimisation using off-line look-up tables, Universitat Politecnica de Catalunya, 2017.
- Hammad, Ahmed W. A. – Rey, David – Bu-Qammaz, Amani – Grzybowska, Hanna – Akbarnezhad, Ali: Mathematical optimization in enhancing the sustainability of aircraft trajectory: A review. International Journal of Sustainable Transportation, č. 6, zv. 14, str. 413-436, 2020.
- Abir Boukil: Étude des performances du procédé d'ultrafiltration lors de la concentration d'hydrolysats trypsiques de β-lactoglobuline prétraitée par hautes pressions hydrostatiques. Universite Laval, Québec, Canada, 2018.
- Sana, Madiha – Mustahsan, Muhammad: Finite Element Approximation of Optimal Control Problem with Weighted Extended B-Splines. Mathematics, č. 5, zv. 7, 2019.
- Hammad, A.W.A. – Rey, D. – Bu-Qammaz, A. – Grzybowska, H. – Akbarnezhad, A.: Mathematical optimization in enhancing the sustainability of aircraft trajectory: A review. International Journal of Sustainable Transportation, 2019.
- Al-Obaidi, M. – Kara-Zaitri, C. – Mujtaba, I.: Wastewater Treatment by Reverse Osmosis Process, Boca Raton: CRC Press, 2020.
- Baena-Moreno, Francisco M – le Saché, Estelle – Pastor-Pérez, Laura – Reina, TR: Biogas as a Renewable Energy Source: Focusing on Principles and Recent Advances of Membrane-Based Technologies for Biogas Upgrading. V Membranes for Environmental Applications, str. 95–120, 2020.
- A. Mészáros – M. Klaučo – K. Kiš: Neural Network Controllers in Chemical Technologies. V 2020 IEEE 15th International Conference of System of Systems Engineering (SoSE), str. 397-402, 2020.
- Alardhi, Saja Mohsen – Alrubaye, Jamal M – Albayati, Talib M: Removal of Methyl Green Dye from simulated waste water using Hollow Fiber Ultrafiltration Membrane. V IOP Conference Series: Materials Science and Engineering, str. 052020, 2020.
- Servent, A. – Abreu, F.A.P. – Dhuique-Mayer, C. – Belleville, M.-P. – Dornier, M.: Concentration and purification by crossflow microfiltration with diafiltration of carotenoids from a by-product of cashew apple juice processing. Innovative Food Science and Emerging Technologies, č. 102519, zv. 66, 2020.
- Mierzwa, J.C. – Lemos, H.G. – Ragio, R.A. – Conceição, A.C.S. – Venancio, E.C. – Subtil, E.L.: Assessment of mixed matrix membranes (MMMs) incorporated with graphene oxide (GO) for co-treatment of wastewater and landfill leachate (LFL) in a membrane bioreactor (MBR). Chemical Engineering Journal, str. 131772, 2021.
- Montero, Manuel – Acosta, Oscar G. – Bonilla, I, Ana: Membrane fractionation of gelatins extracted from skin of yellowfin tuna (Thunnus albacares): effect on molecular sizes and gelling properties of fractions. Cyta-journal of Food, č. 1, zv. 20, str. 183-189, 2022.
- Cao, Wen – Xu, Yufeng: Collocation Method for Optimal Control of a Fractional Distributed System. Fractal and Fractional, č. 10, zv. 6, str. 594, 2022.
- Koegel, Markus – Findeisen, Rolf: Improved Robust Decentralized MPC. V 2018 European Control Conference (ECC), str. 312-318, 2018.
- Fitzgerald, John – Gamble, Carl – Larsen, Peter Gorm – Pierce, Kenneth – Woodcock, Jim: Cyber-Physical Systems Design: Formal Foundations, Methods and Integrated Tool Chains (Invited Paper). V 2015 IEEE/acm 3rd Fme Workshop on Formal Methods in Software Engineering, str. 40-46, 2015.
- Lucia, Sergio – Koegel, Markus – Zometa, Pablo – Quevedo, Daniel E. – Findeisen, Rolf: Predictive control, embedded cyberphysical systems and systems of systems - A perspective. Annual Reviews in Control, zv. 41, str. 193-207, 2016.
- Rojas, Rafael A. – Rauch, Erwin: From a literature review to a conceptual framework of enablers for smart manufacturing control. International Journal of Advanced Manufacturing Technology, č. 1-4, zv. 104, str. 517-533, 2019.
- Rojas, Rafael A. – Rauch, Erwin – Vidoni, Renato – Matt, Dominik T.: Enabling Connectivity of Cyber-Physical Production Systems: A Conceptual Framework. V 27th International Conference on Flexible Automation and Intelligent Manufacturing, Faim2017, str. 822-829, 2017.
- Challenger, Moharram – Vangheluwe, Hans: Towards Employing ABM and MAS Integrated with MBSE for the Lifecycle of SCPSoS. V Proceedings of the 23rd ACM/IEEE International Conference on Model Driven Engineering Languages and Systems: Companion Proceedings, str. 1-7, 2020.
- Colombo,A. W. – Karnouskos,S. – Kaynak,O. – Shi,Y. – Yin,S.: Industrial Cyberphysical Systems: A Backbone of the Fourth Industrial Revolution. IEEE Industrial Electronics Magazine, č. 1, zv. 11, str. 6-16, 2017.
- Erkki Jantunen – Urko Zurutuza – Michele Albano – Giovanni di Orio – Pedro Maló – Csaba Hegedus: The Way Cyber Physical Systems Will Revolutionise Maintenance. V 30th Conference on Condition Monitoring and Diagnostic Engineering Management (COMADEM 2017), Preston, United Kingdom, 2017.
- Palkovits-Rauter, Silke – Maksuti, Silia – Bicaku, Ani – Tauber, Markus: Towards Trustworthy End-to-End Communication inIndustry 4.0. IEEE, V IEEE 15th International Conference of Industrial Inforimatics (INDIN) 2017, 2017.
- Thramboulidis,K. – Bochalis,P. – Bouloumpasis,J.: A framework for MDE of IoT-based manufacturing cyber-physical systems. V ACM International Conference Proceeding Series, 2017.
- Cimini, Chiara – Pirola, Fabiana – Pinto, Roberto – Cavalieri, Sergio: A human-in-the-loop manufacturing control architecture for the next generation of production systems. Journal of Manufacturing Systems, zv. 54, str. 258-271, 2020.
- Siri, S. – Ferrara, A. – Sacone, S.: Emerging freeway traffic control strategies. Advances in Industrial Control, č. 9783319759593, str. 293-311, 2018.
- Makio-Marusik,E. – Ahmad,B. – Harrison,R. – Makio,J. – Walter,A.: Competences of cyber physical systems engineers - Survey results. V Proceedings - 2018 IEEE Industrial Cyber-Physical Systems, ICPS 2018, str. 491-496, 2018.
- Zivkovic,V. – Novoselnik,B. – Baotic,M.: Alternating direction method of multipliers in optimal control of systems of systems. V 2018 41st International Convention on Information and Communication Technology, Electronics and Microelectronics, MIPRO 2018 - Proceedings, str. 908-913, 2018.
- Sirsak Tepjit – Imre Horváth – Zoltán Rusák: Transdisciplinary Engineering Methods for Social Innovation of Industry 4.0, Kapitola: An Analysis of the State of Framework Development for Reasoning in Smart Cyber-Physical Systems. IOS Pres, str. 82-92, 2018.
- Fele,F. – Debada,E. – Maestre,J. M. – Camacho,E. F.: Coalitional Control for Self-Organizing Agents. IEEE Transactions on Automatic Control, č. 9, zv. 63, str. 2883-2897, 2018.
- Findeisen,R. – Kögel,M. – Blasi,S.: Distributed Model Predictive Control Using Cooperative Contract Options. IFAC-PapersOnLine, č. 20, zv. 51, str. 448-454, 2018.
- Vassalos,D. – Boulougouris,E. – Bujorianu,L. M. – Theotokatos,G. – Bolbot,V.: Vulnerabilities and safety assurance methods in Cyber-Physical Systems: A comprehensive review. Reliability Engineering and System Safety, zv. 182, str. 179-193, 2019.
- Maekioe-Marusik, Elena: Current Trends in Teaching Cyber Physical Systems Engineering A Literature Review. V 2017 IEEE 15TH INTERNATIONAL CONFERENCE ON INDUSTRIAL INFORMATICS (INDIN, str. 518-525, 2017.
- Cha, Suhyun – Ulbrich, Mattias – Weigl, Alexander – Beckert, Bernhard – Land, Kathrin – Vogel-Heuser, Birgit: On the Preservation of the Trust by Regression Verification of PLC software for Cyber-Physical Systems of Systems. V 2019 IEEE 17th International Conference on Industrial Informatics (indin), str. 413-418, 2019.
- Schmittner,C. – Matischek,R. – Tauber,M. – Palkovits-Rauter,S. – Maksuti,S. – Bicaku,A. – Delsing,J. – Thron,M. – Mantas,G.: Towards trustworthy end-to-end communication in industry 4.0. V Proceedings - 2017 IEEE 15th International Conference on Industrial Informatics, INDIN 2017, str. 889-896, 2017.
- Schlüter, F. – Hetterscheid, E.: Morphology for designing cyber-physical systems in supply chain planning and control processes. Logistics Journal, zv. 2019, str. 1-11, 2019.
- F. Fele: Coalitional model predictive control for systems of systems, Universidad de Sevilla, Universidad de Sevilla, 2019.
- Antonella Ferrara – Simona Sacone – Silvia Siri: Freeway Traffic Modelling and Control, Springer, 2019.
- Novoselnik, Branimir – Spudic, Vedrana – Baotic, Mato: Parametric Optimization Based MPC for Systems of Systems With Affine Coordination Constraints. IEEE Transactions on Automatic Control, č. 2, zv. 65, str. 649-663, 2020.
- Iannino, Vincenzo – Colla, Valentina – Denker, Joachim – Goettsche, Marc: A CPS-Based Simulation Platform for Long Production Factories. Metals, č. 10, zv. 9, 2019.
- Şekercioğlu, A. – Arvin, F. – Elmenreich, W. – Schmickl, T. – Di Caro, G.A. – Schranz, M. – Sende, M.: Swarm Intelligence and cyber-physical systems: Concepts, challenges and future trends. Swarm and Evolutionary Computation, zv. 60, str. 100762, 2021.
- G. {Keramidas} – C. P. {Antonopoulos} – N. {Voros} – P. {Jääskeläinen} – M. C. {Cid} – E. I. {Zacharaki} – A. P. {Fournaris} – A. {Lalos}: CPSoSaware: Cross-Layer Cognitive Optimization Tools Methods for the Lifecycle Support of Dependable CPSoS. V 2020 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), str. 470-475, 2020.
- Tepjit, Sirasak – Horváth, Imre – Rusák, Zoltán: The state of framework development for implementing reasoning mechanisms in smart cyber-physical systems: A literature review. Journal of Computational Design and Engineering, č. 4, zv. 6, str. 527-541, 2019.
- Milena Guessi – Valdemar Vicente Graciano - Neto – Elisa Yumi Nakagawa: Topics on Information Systems: Short Courses for SBSI 2019, Kapitola: Architectural Description of Systems-of-Information. SBC, Porto Alegre, str. 29-52, 2020.
- Challenger, Moharram – Vangheluwe, Hans: Towards Employing ABM and MAS Integrated with MBSE for the Lifecycle of SCPSoS. V Proceedings of the 23rd ACM/IEEE International Conference on Model Driven Engineering Languages and Systems: Companion Proceedings, str. 1-7, 2020.
- Horváth, I.: A computational framework for procedural abduction done by smart cyber-physical systems. Designs, č. 1, zv. 3, str. 1-27, 2019.
- Drabek, Christian – Shekhada, Dhavalkumar – Weiss, Gereon – Trapp, Mario – Ishigooka, Tasuku – Otsuka, Satoshi – Mizuochi, Mariko: Dependable and Efficient Cloud-Based Safety-Critical Applications by Example of Automated Valet Parking. Springer International Publishing, V Intelligent Transport Systems, From Research and Development to the Market Uptake, str. 90-109, 2021.
- Leenders, Ludger – Ganz, Kirstin – Bahl, Bjoern – Hennen, Maike – Baumgaertner, Nils – Bardow, Andre: Scheduling coordination of multiple production and utility systems in a multi-leader multi-follower Stackelberg game. Computers & Chemical Engineering, zv. 150, str. 107321, 2021.
- Doo-Hwan Bae – Yong-Jun Shin – Lingjun Liu – Sangwon Hyun: Platooning LEGOs: An Open Physical Exemplar for Engineering Self-Adaptive Cyber-Physical Systems-of-Systems. IEEE, V 2021 International Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS), str. 231-237, 2021.
- Clarke, S.G. – Thapliyal, O. – Hwang, S. – Hwang, I.: Attack-Resilient Distributed Optimization-based Control of Multi-Agent Systems with Dual Interaction Networks. V AIAA Science and Technology Forum and Exposition, AIAA SciTech Forum 2022, str. 2022-2342, 2022.
- Habib,M. K. – Chimsom I,C.: CPS: Role, Characteristics, Architectures and Future Potentials. V Procedia Computer Science, str. 1347-1358, 2022.
- Chen, Zhiwei – Zhao, Tingdi – Jiao, Jian – Chu, Jiayun: Performance-threshold-based resilience analysis of system of systems by considering dynamic reconfiguration. Proceedings of the Institution of Mechanical Engineers Part B-journal of Engineering Manufacture, č. 14, SI, zv. 236, str. 1828-1838, 2022.
- Bae,D. -. – Kim,H. – Hyun,S. – Shin,Y. -. – Cho,E.: Automatic Generation of Metamorphic Relations for a Cyber-Physical System-of-Systems Using Genetic Algorithm. V Proceedings - Asia-Pacific Software Engineering Conference, APSEC, str. 209-218, 2022.
- Horvath, Imre: Designing next-generation cyber-physical systems: Why is it an issue?. Journal of Integrated Design & Process Science, č. 3-4, zv. 26, str. 317-349, 2022.
- Tim Weilkiens – Jesko G. Lamm – Stephan Roth – Markus Walker: Model-Based System Architecture, Second Edition, John Wiley & Sons, Inc., 2022.
- Heinrich, Jana – Balduf, Florian – Becker, Martin – Adler, Rasmus – Elberzhager, Frank: Industry Voices on Software Engineering Challenges in Dynamic Systems of Systems. V 2023 IEEE/acm 11th International Workshop on Software Engineering for Systems-of-systems and Software Ecosystems, Sesos, str. 58-64, 2023.
- Jørgensen, John Bagterp – Frison, Gianluca – Kouzoupis, Dimitris – Diehl, Moritz: A high-performance Riccati based solver for tree-structured quadratic program. IFAC-PapersOnLine, č. 1, zv. 50, str. 14399-14405, 2017.
- Pakazad,S. K. – Hansson,A.: Exploiting chordality in optimization algorithms for model predictive control, zv. 2227, 2018.
- Diehl,M. – Rawlings,J. B. – Horn,G. – Gillis,J. – Andersson,J. A. E.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation, č. 1, zv. 11, 2019.
- Kouzoupis, D. – Klintberg, E. – Frison, G. – Gros, S. – Diehl, M.: A dual Newton strategy for tree-sparse quadratic programs and its implementation in the open-source software treeQP. International Journal of Robust and Nonlinear Control, č. 8, zv. 29, str. 2438-2457, 2019.
- Pakazad, S.K. – Hansson, A. – Ahmadi, S.P.: Efficient robust model predictive control using chordality. V 2019 18th European Control Conference, ECC 2019, str. 4270-4275, 2019.
- Liu, S. – Sadowska, A. – De Schutter, B.: A scenario-based distributed model predictive control approach for freeway networks. Transportation Research Part C: Emerging Technologies, zv. 136, str. 103261, 2022.
- Rossi, Francesco – Reklaitis, Gintaras – Manenti, Flavio – Buzzi-Ferraris, Guido: Multi-Scenario Robust Online Optimization and Control of Fed-Batch Systems via Dynamic Model-Based Scenario Selection. Aiche Journal, č. 9, zv. 62, str. 3264-3284, 2016.
- Schloeder, J. P. – Potschka, A. – La, H. C. – Bock, H. G.: Dual Control and Information Gain in Controlling Uncertain Processes. Ifac Papersonline, č. 7, zv. 49, str. 139-144, 2016.
- Diehl,M. – Horn,G. – Gillis,J. – Andersson,J. A. E. – Rawlings,J. B.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation, č. 1, zv. 11, 2019.
- Mesbah,A.: Stochastic model predictive control with active uncertainty learning: A Survey on dual control. Annual Reviews in Control, zv. 45, str. 107-117, 2018.
- Lappas, N.H. – Tejeda-Iglesias, M. – Gounaris, C.E. – Ricardez-Sandoval, L.: Explicit model predictive controller under uncertainty: An adjustable robust optimization approach. Journal of Process Control, zv. 84, str. 115-132, 2019.
- Rossi,F. – Manenti,F. – Buzzi-Ferraris,G. – Reklaitis,G.: Stochastic NMPC/DRTO of batch operations: Batch-to-batch dynamic identification of the optimal description of model uncertainty. Computers and Chemical Engineering, zv. 122, str. 395-414, 2019.
- Paulson, Joel A. – Mesbah, Ali: An efficient method for stochastic optimal control with joint chance constraints for nonlinear systems. International Journal of Robust and Nonlinear Control, č. 15, SI, zv. 29, str. 5017-5037, 2019.
- Findeisen,R. – Kogel,M. – Kishida,M.: Verifying robust forward admissibility for nonlinear systems using (skewed) structured singular values. V 2016 IEEE 55th Conference on Decision and Control, CDC 2016, str. 4065-4071, 2016.
- Findeisen,R. – Lucia,S. – Bathge,T.: Exploiting models of different granularity in robust predictive control. V 2016 IEEE 55th Conference on Decision and Control, CDC 2016, str. 2763-2768, 2016.
- Yichen Zhang – Yan Li – Kevin Tomsovic – Seddik Djouadi – Meng Yue: Review on Set-Theoretic Methods for Safety Verification and Control of Power System. IET Energy Systems Integration, 2020.
- Muxin Sun: Design of Multi-parametric NCO-Tracking Controllers for Linear Continuous-time Systems, Imperial College London, 2018.
- Diedam, H. – Sager, S.: Global optimal control with the direct multiple shooting method. Optimal Control Applications & Methods, č. 2, SI, zv. 39, str. 449-470, 2018.
- Schweidtmann,A. M. – Huster,W. R. – Lüthje,J. T. – Mitsos,A.: Deterministic global process optimization: Accurate (single-species) properties via artificial neural networks. Computers and Chemical Engineering, zv. 121, str. 67-74, 2019.
- Najman,J. – Mitsos,A.: Improved McCormick relaxations in a branch-and-bound framework. V Computing and Systems Technology Division 2017 - Core Programming Area at the 2017 AIChE Annual Meeting, str. 482-492, 2017.
- Schweidtmann,A. M. – Mitsos,A.: Deterministic Global Optimization with Artificial Neural Networks Embedded. Journal of Optimization Theory and Applications, č. 3, zv. 180, str. 925–948, 2019.
- Pitt,J. A. – Banga,J. R.: Parameter estimation in models of biological oscillators: An automated regularised estimation approach. BMC Bioinformatics, č. 1, zv. 20, 2019.
- Bongartz,D. – Mitsos,A.: Deterministic global flowsheet optimization: Between equation-oriented and sequential-modular methods. AIChE Journal, č. 3, zv. 65, str. 1022-1034, 2019.
- Najman, J. – Mitsos, A.: Tighter McCormick relaxations through subgradient propagation. Journal of Global Optimization, 2019.
- Huster, W.R. – Schweidtmann, A.M. – Mitsos, A.: Impact of Accurate Working Fluid Properties on the Globally Optimal Design of an Organic Rankine Cycle. Computer Aided Chemical Engineering, zv. 47, str. 427-432, 2019.
- Schweidtmann, A.M. – Bongartz, D. – Huster, W.R. – Mitsos, A.: Deterministic Global Process Optimization: Flash Calculations via Artificial Neural Networks. Computer Aided Chemical Engineering, zv. 46, str. 937-942, 2019.
- Najman, J. – Bongartz, D. – Mitsos, A.: Convex relaxations of componentwise convex functions. Computers and Chemical Engineering, č. 106527, zv. 130, 2019.
- Najman,J. – Bongartz,D. – Mitsos,A.: Relaxations of thermodynamic property and costing models in process engineering. Computers and Chemical Engineering, zv. 130, 2019.
- Wessling,M. – Mitsos,A. – Ostendorf,K. – Karwe,J. – Kamp,J. – Aumeier,B. M. – Schweidtmann,A. M. – Rall,D.: Simultaneous rational design of ion separation membranes and processes. Journal of Membrane Science, zv. 600, str. 117860, 2020.
- D. Calzolari – A. Albu-Schäffer – A. M. Giordano: Error Bounds for PD-Controlled Mechanical Systems Under Bounded Disturbances Using Interval Arithmetic. IEEE Robotics and Automation Letters, č. 2, zv. 5, str. 1231-1238, 2020.
- Bongartz, D. – Najman, J. – Mitsos, A.: Deterministic global optimization of steam cycles using the IAPWS-IF97 model. Optimization and Engineering, 2020.
- Huster, W.R. – Schweidtmann, A.M. – Lüthje, J.T. – Mitsos, A.: Deterministic global superstructure-based optimization of an organic Rankine cycle. Computers and Chemical Engineering, č. 106996, zv. 141, 2020.
- Najman, Jaromil – Mitsos, Alexander: On tightness and anchoring of McCormick and other relaxations. Journal of Global Optimization, č. 4, SI, zv. 74, str. 677-703, 2019.
- Merhy, D. – Stoica Maniu, C. – Alamo, T. – Camacho, E.F. – Ben Chabane, S. – Chevet, T. – Makarov, M. – Hinostroza, I.: Guaranteed set-membership state estimation of an octorotor's position for radar applications. International Journal of Control, č. 11, zv. 93, str. 2760-2770, 2020.
- Merhy, D. – Stoica Maniu, C. – Alamo, T. – Camacho, E.F. – Ben Chabane, S. – Chevet, T. – Makarov, M. – Hinostroza, I.: Guaranteed set-membership state estimation of an octorotor\\\'s position for radar applications. International Journal of Control, č. 11, zv. 93, str. 2760-2770, 2020.
- Schweidtmann, A.M. – Weber, J.M. – Wende, C. – Netze, L. – Mitsos, A.: Obey validity limits of data-driven models through topological data analysis and one-class classification. Optimization and Engineering, 2021.
- Urrea-Quintero, J.-H. – Fuhg, J.N. – Marino, M. – Fau, A.: PI/PID controller stabilizing sets of uncertain nonlinear systems: an efficient surrogate model-based approach. Nonlinear Dynamics, č. 1, zv. 105, str. 277-299, 2021.
- Pribourg, Laurent – Ballet, Gabriel – dit Sandretto, Julien Alexandre – Fnadi, Mohamed: Guaranteed Identification of Viscous Friction for a Nonlinear Inverted Pendulum Through Interval Analysis and Set Inversion. V 2021 American Control Conference (ACC), str. 3920-3926, 2021.
- Burre, J. – Bongartz, D. – Mitsos, A.: Comparison of MINLP formulations for global superstructure optimization. Optimization and Engineering, 2022.
- Kappatou,C. D. – Bongartz,D. – Najman,J. – Sass,S. – Mitsos,A.: Global dynamic optimization with Hammerstein–Wiener models embedded. Journal of Global Optimization, 2022.
- Ronzani, Daniele – Gillis, Joris – Pipeleers, Goele – Swevers, Jan: ECOset-ILC: an Iterative Learning Control Approach with Set-membership Uncertainty. V 2022 IEEE 17th International Conference on Advanced Motion Control (AMC), str. 68-75, 2022.
- Fahr,S. – Mitsos,A. – Bongartz,D.: Simultaneous deterministic global flowsheet optimization and heat integration: Comparison of formulations. Computers and Chemical Engineering, zv. 162, str. 107790, 2022.
- Burre,J. – Kabatnik,C. – Al-Khatib,M. – Bongartz,D. – Jupke,A. – Mitsos,A.: Global flowsheet optimization for reductive dimethoxymethane production using data-driven thermodynamic models. Computers and Chemical Engineering, zv. 162, str. 107806, 2022.
- Sass, Susanne – Tsoukalas, Angelos – Bell, Ian H. H. – Bongartz, Dominik – Najman, Jaromil – Mitsos, Alexander: Towards global parameter estimation exploiting reduced data sets. Optimization Methods & Software, 2023.
- Religa, Pawel – Kazmierczak, Bernadetta: Desalination of chromium tannery wastewater by nanofiltration with different diafiltration mode. Desalination and Water Treatment, zv. 64, str. 409-413, 2017.
- Aguero, R. – Bringas, E. – San Roman, M. F. – Ortiz, I. – Ibanez, R.: Membrane Processes for Whey Proteins Separation and Purification. A Review. Current Organic Chemistry, č. 17, zv. 21, str. 1740-1752, 2017.
- van der Padt, Albert – Jacobs, Marc – Ozkan, Leyla – Saltik, M. Bahadir: Optimal Start-Up and Operation Policy for an Ultrafiltration Membrane Unit in Whey Separation. V 26th European Symposium on Computer Aided Process Engineering (escape), Pt B, str. 1599-1604, 2016.
- Liu, Ping – Li, Guodong – Liu, Xinggao – Zhang, Zeyin: A NOVEL FAST DYNAMIC OPTIMIZATION APPROACH FOR COMPLEX MULTIVARIABLE CHEMICAL PROCESS SYSTEMS. Canadian Journal of Chemical Engineering, č. 12, zv. 94, str. 2355-2363, 2016.
- Torrestiana-Sánchez, B. – Martínez-Alvarado, J.C. – Aguilar-Uscanga, M.G.: Isolation of steviol glycosides by a two-step membrane process operating under sustainable flux. Food and Bioproducts Processing, zv. 101, str. 223-230, 2017.
- Dario Jose Rincon Garcia – José Uriel Sepúlveda-Valencia – Héctor José Ciro-Velásquez: Evaluación del proceso de Diafiltración para la concentración de la proteína en el suero dulce de quesería. DYNA, zv. 87, str. 239-247, 2020.
- Ricardez-Sandoval, Luis A. – Palma-Flores, Oscar – Andres-Martinez, Oswaldo: Optimal control and the Pontryagin's principle in chemical engineering: History, theory, and challenges. AICHE JOURNAL, č. 8, zv. 68, str. e17777, 2022.
- Baldasso, Camila – Silvestre, Wendel Paulo – Silveira, Nauro – Vanin, Ana Paula – Medeiros Cardozo, Nilo Sergio – Tessaro, Isabel Cristina: Ultrafiltration and diafiltration modeling for improved whey protein purification. Separation Science and Technology, 2022.
- Ashtankar, V, Poonam – Sawarkar, Punam: Role of Panchatikta Panchaprasutik Niruha Vasti in Prediabetes A case report. International Journal of Ayurvedic Medicine, č. 3, zv. 11, str. 588-593, 2020.
- Qalyoubi,L. – Al-Othman,A. – Al-Asheh,S.: Removal of ciprofloxacin antibiotic pollutants from wastewater using nano-composite adsorptive membranes. Environmental research, zv. 215, 2022.
- Gros, Sebastien – Fredriksson, Jonas – Dahl, John – Klintberg, Emil: An improved dual Newton strategy for scenario-tree MPC. V 2016 IEEE 55th Conference on Decision and Control (CDC), str. 3675-3681, 2016.
- Zhang, S. – Jia, R. – You, F.: Transfer learning for end-product quality prediction of batch processes using domain-adaption joint-Y PLS. Computers and Chemical Engineering, zv. 140, str. 106943, 2020.
- Dyro,R. – Harrison,J. – Sharma,A. – Pavone,M.: Particle MPC for Uncertain and Learning-Based Control. V IEEE International Conference on Intelligent Robots and Systems, str. 7127-7134, 2021.
- Madsen, Henrik – Poulsen, Niels Kjolstad – Mahmoudi, Zeinab – Hagdrup, Morten – Boiroux, Dimitri – Jorgensen, John Bagterp: An Ensemble Nonlinear Model Predictive Control Algorithm in an Artificial Pancreas for People with Type 1 Diabetes. V 2016 European Control Conference (ECC), str. 2115-2120, 2016.
- Zhang, Runfan – Chen, Diyi – Ma, Xiaoyi: Nonlinear Predictive Control of a Hydropower System Model. Entropy, č. 9, zv. 17, str. 6129-6149, 2015.
- Klintberg, Emil – Gros, Sebastien: A Parallelizable Interior Point Method for Two-Stage Robust MPC. IEEE Transactions on Control Systems Technology, č. 6, zv. 25, str. 2087-2097, 2017.
- Oberdieck, Richard Heinrich: Theoretical and algorithmic advances in multi-parametric optimization and control, Imperial College London, 2017.
- Krishnamoorthy, D. – Foss, B. – Skogestad, S.: A Primal decomposition algorithm for distributed multistage scenario model predictive control. Journal of Process Control, zv. 81, str. 162-171, 2019.
- Dinesh Krishnamoorthy – Bjarne Foss – Sigurd Skogestad: Gas Lift Optimization under Uncertainty. V Computer Aided Chemical Engineering, vol. 40, str. 1753-1758, 2017.
- Kouzoupis, D. – Klintberg, E. – Diehl, M. – Gros, S.: A dual Newton strategy for scenario decomposition in robust multistage MPC. International Journal of Robust and Nonlinear Control, č. 6, zv. 28, str. 2340-2355, 2018.
- Krishnamoorthy, Dinesh – Foss, Bjarne – Skogestad, Sigurd: A Distributed Algorithm for Scenario-based Model Predictive Control using Primal Decomposition. Ifac Papersonline, č. 18, zv. 51, str. 351-356, 2018.
- Jäschke,J. – Krishnamoorthy,D. – Thombre,M. – Skogestad,S.: Data-driven Scenario Selection for Multistage Robust Model Predictive Control⁎. IFAC-PapersOnLine, č. 20, zv. 51, str. 462-468, 2018.
- Han,X. -. – Feng,Y. – Dong,N. – Wu,A. -.: An improved model-free adaptive predictive control algorithm for nonlinear systems with large time delay. V Proceedings of 2018 IEEE 7th Data Driven Control and Learning Systems Conference, DDCLS 2018, str. 60-64, 2018.
- Krishnamoorthy,D. – Suwartadi,E. – Foss,B. – Skogestad,S. – Jaschke,J.: Improving Scenario Decomposition for Multistage MPC Using a Sensitivity-Based Path-Following Algorithm. IEEE Control Systems Letters, č. 4, zv. 2, str. 581-586, 2018.
- Holtorf, F. – Mitsos, A. – Biegler, L.T.: Multistage NMPC with on-line generated scenario trees: Application to a semi-batch polymerization process. Journal of Process Control, zv. 80, str. 167-179, 2019.
- Garcia-Tirado, J. – Corbett, J.P. – Boiroux, D. – Jørgensen, J.B. – Breton, M.D.: Closed-loop control with unannounced exercise for adults with type 1 diabetes using the Ensemble Model Predictive Control. Journal of Process Control, zv. 80, str. 202-210, 2019.
- Holtorf, Flemming – Mitsos, Alexander – Biegler, Lorenz T.: Adaptive Scenario Generation for Multistage NMPC with Shrinking Horizons. Ifac Papersonline, č. 1, zv. 52, str. 586-591, 2019.
- Garcia-Tirado,J. – Colmegna,P. – Corbett,J. – Ozaslan,B. – Breton,M. D.: Ensemble model predictive control strategies can reduce exercise hypoglycemia in type 1 diabetes: In silico studies. V Proceedings of the American Control Conference, str. 4752-4758, 2019.
- Kanavalau,A. – Masters,R. – Kähm,W. – Vassiliadis,V. S.: Robust thermal stability for batch process intensification with model predictive control. Computers and Chemical Engineering, zv. 130, 2019.
- Garcia-Tirado,J. – Colmegna,P. – Corbett,J. P. – Ozaslan,B. – Breton,M. D.: In Silico Analysis of an Exercise-Safe Artificial Pancreas With Multistage Model Predictive Control and Insulin Safety System. Journal of Diabetes Science and Technology, č. 6, zv. 13, str. 1054-1064, 2019.
- Walter Kähm: Thermal stability criteria embedded in advanced control systems for batch process intensification, University of Cambridge, University of Cambridge, 2019.
- Tejeda-Iglesias, M. – Lappas, N.H. – Gounaris, C.E. – Ricardez-Sandoval, L.: Explicit model predictive controller under uncertainty: An adjustable robust optimization approach. Journal of Process Control, zv. 84, str. 115-132, 2019.
- Allman, Andrew – Tang, Wentao – Daoutidis, Prodromos: DeCODe: a community-based algorithm for generating high-quality decompositions of optimization problems. Optimization and Engineering, č. 4, SI, zv. 20, str. 1067-1084, 2019.
- Ribeiro,L. D. – Secchi,A. R.: A methodology to obtain analytical models that reduce the computational complexity faced in real time implementation of NMPC controllers. Brazilian Journal of Chemical Engineering, č. 3, zv. 36, str. 1255-1278, 2019.
- Mathur, P. – Swartz, C.L.E. – Zyngier, D. – Welt, F.: Robust online scheduling for optimal short-term operation of cascaded hydropower systems under uncertainty. Journal of Process Control, zv. 98, str. 52-65, 2021.
- Jäschke, J. – (Joyce) Yu, Z. – Thombre, M. – Biegler, L.T.: Sensitivity-Assisted multistage nonlinear model predictive control: Robustness, stability and computational efficiency. Computers and Chemical Engineering, zv. 148, str. 107269, 2021.
- Li, H. – Swartz, C.L.E.: Robust model predictive control via multi-scenario reference trajectory optimization with closed-loop prediction. Journal of Process Control, zv. 100, str. 80-92, 2021.
- Bjorvand, Simen – Jaschke, Johannes: Improving Primal Decomposition for Multistage MPC Using an Extended Newton Method. IEEE Control Systems Letters, zv. 7, str. 2677-2682, 2023.
- MacKinnon, L. – Li, H. – Swartz, C.L.E.: Robust model predictive control with embedded multi-scenario closed-loop prediction. Computers and Chemical Engineering, zv. 149, str. 107283, 2021.
- Nolasco, E. – Vassiliadis, V.S. – Kähm, W. – Adloor, S.D. – Ismaili, R.A. – Conejeros, R. – Espaas, T. – Gangadharan, N. – Mappas, V. – Scott, F. – Zhang, Q.: Optimal control in chemical engineering: Past, present and future. Computers and Chemical Engineering, zv. 155, str. 107528, 2021.
- Alamir,M.: Learning against uncertainty in control engineering. Annual Reviews in Control, zv. 53, str. 19 - 29, 2022.
- Ahmed,A. – del Rio-Chanona,E. A. – Mercangöz,M.: Linearizing nonlinear dynamics using deep learning. Computers and Chemical Engineering, zv. 170, 2023.
- Jeong, Changhun – Furenes, Beathe – Sharma, Roshan: Implementation of simplified sequential stochastic model predictive control for operation of hydropower system under uncertainty. Computers & Chemical Engineering, zv. 179, str. 108409, 2023.
- Saltik, M. Bahadir – Ozkan, Leyla – Jacobs, Marc – van der Padt, Albert: Dynamic modeling of ultrafiltration membranes for whey separation processes. Computers & Chemical Engineering, zv. 99, str. 280-295, 2017.
- Religaa, Pawel – Kazmierczak, Bernadetta: Desalination of chromium tannery wastewater by nanofiltration with different diafiltration mode. Desalination and Water Treatment, zv. 64, str. 409-413, 2017.
- Wu,D. – Liang,J.: Construction of the cultivation system of innovation and entrepreneurship ability of economics and management specialty relying on multi-way tree optimal solution set. Boletin Tecnico/Technical Bulletin, č. 17, zv. 55, str. 380-387, 2017.
- Khunnonkwao,P. – Jantama,K. – Kanchanatawee,S. – Galier,S. – Roux-de Balmann,H.: A two steps membrane process for the recovery of succinic acid from fermentation broth. Separation and Purification Technology, zv. 207, str. 451-460, 2018.
- Robles, Angel – Victoria Ruano, Maria – Charfi, Amine – Lesage, Geoffroy – Heran, Marc – Harmand, Jerome – Seco, Aurora – Steyer, Jean-Philippe – Batstone, Damien J. – Kim, Jeonghwan – Ferrer, Jose: A review on anaerobic membrane bioreactors (AnMBRs) focused on modelling and control aspects. Bioresource Technology, zv. 270, str. 612-626, 2018.
- Kumar, V. – Kaistha, N.: Invariants for optimal operation of a reactor-separator-recycle process. Journal of Process Control, zv. 82, str. 1-12, 2019.
- Gao,F. – Zhang,R. – Wang,L.: Iterative learning stabilization and fault-tolerant control for batch processes, str. 1-323, 2019.
- Ge, Yulei – Li, Shurong – Shi, Yuhuan – Han, Lu: An adaptive wavelet method for solving mixed-integer dynamic optimization problems with discontinuous controls and application to alkali-surfactant-polymer flooding. Engineering Optimization, č. 6, zv. 51, str. 1028-1048, 2019.
- Gao, Yulan – Yang, Jie – Song, Xinwei – Shen, Dongmei – Wang, Wanfen – Zhang, Weimin – Jiang, Jichao: An experimental study on the use of a sequencing-batch membrane bioreactor (SBMBR) for the treatment of mixed municipal wastewater. Water Science and Technology, č. 6, zv. 83, str. 1459-1469, 2021.
- Pitarch, J. L. – Palacin, C. G. – De Prada, C. – Voglauer, B. – Seyfriedsberger, G.: Optimisation of the resource efficiency in an industrial evaporation system. Journal of Process Control, zv. 56, str. 1-12, 2017.
- Thombre, Mandar – Krishnamoorthy, Dinesh – Skogestad, Sigurd – Jaschke, Johannes: Data-driven Scenario Selection for Multistage Robust Model Predictive Control. Ifac Papersonline, č. 20, zv. 51, str. 462-468, 2018.
- Horn,G. – Gillis,J. – Andersson,J. A. E. – Rawlings,J. B. – Diehl,M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation, č. 1, zv. 11, 2019.
- Holtorf, F. – Mitsos, A. – Biegler, L.T.: Multistage NMPC with on-line generated scenario trees: Application to a semi-batch polymerization process. Journal of Process Control, zv. 80, str. 167-179, 2019.
- Xue, R. – Yuan, W. – Sun, J. – Wang, M.: An improved multi-stage nonlinear model predictive control with application to semi-batch polymerization. V 2019 12th Asian Control Conference, ASCC 2019, str. 1060-1065, 2019.
- Holtorf, Flemming – Mitsos, Alexander – Biegler, Lorenz T.: Adaptive Scenario Generation for Multistage NMPC with Shrinking Horizons. Ifac Papersonline, č. 1, zv. 52, str. 586-591, 2019.
- Hanema,J. – Lazar,M. – Tóth,R.: Heterogeneously parameterized tube model predictive control for LPV systems. Automatica, zv. 111, 2020.
- Sun, Jing-Gao – Chen, Xian-Feng – Su, Guang-Hao – Wang, Meng – Pan, Hong-Guang: Multi-stage Nonlinear Model Predictive Control with Online Scenario Update for Semi-batch Polymerization Processes. International Journal of Control Automation and Systems, č. 10, zv. 20, str. 3187-3197, 2022.
R. Hernández – L. Simora –
R. Paulen – S. Wegerhoff – R. Mazaeda – C. de Prada – S. Engell:
Optimal Integrated Operation of a Sugar Production Plant. Editor(i): Jirí Jaromír Klemeš, Petar Sabev Varbanov, Peng Yen Liew, V
24th European Symposium on Computer Aided Process Engineering, Elsevier B.V, Radarweg 29, PO Box 211, 1000 AE Amsterdam, Netherlands, zv.
2014, str. 637–642, 2014.
- Khezri,R. – Golshannavaz,S. – Vakili,R. – Memar-Esfahani,B.: Multi-layer fuzzy-based under-frequency load shedding in back-pressure smart industrial microgrids. Energy, zv. 132, str. 96-105, 2017.
- Tkachenko, V, Serhii – Sheiko, V, Tamila – Petrenko, Vasyl V. – Anisimova, Olena M. – Kuznietsova, V, Inha – Khomichak, Lubomir M. – Obodovych, Oleksandr M.: INFLUENCE OF CRYSTALLIZING AGENT ON SUGAR QUALITY. Acta Scientiarum Polonorum-technologia Alimentaria, č. 4, zv. 19, str. 457-465, 2020.
- Rawlings,J. B. – Horn,G. – Gillis,J. – Andersson,J. A. E. – Diehl,M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation, č. 1, zv. 11, 2019.
- Thuy Thi-Thien Le – Sager, Sebastian – Jost, Felix: A Feedback Optimal Control Algorithm with Optimal Measurement Time Points. Processes, č. 1, zv. 5, 2017.
- La, H. C. – Potschka, A. – Schloeder, J. P. – Bock, H. G.: DUAL CONTROL AND ONLINE OPTIMAL EXPERIMENTAL DESIGN. Siam Journal on Scientific Computing, č. 4, zv. 39, str. B640-B657, 2017.
- Krishnamoorthy, Dinesh – Foss, Bjarne – Skogestad, Sigurd: Real-Time Optimization under Uncertainty Applied to a Gas Lifted Well Network. Processes, č. 4, zv. 4, 2016.
- Engell,S. – Lemoine-Nava,R. – Walter,S. F. – Körkel,S.: Online Optimal Experiment Design: Reduction of the Number of Variables. IFAC-PapersOnLine, č. 7, zv. 49, str. 889-894, 2016.
- Bock,H. G. – La,H. C. – Potschka,A. – Schlöder,J. P.: Dual Control and Information Gain in Controlling Uncertain Processes. IFAC-PapersOnLine, č. 7, zv. 49, str. 139-144, 2016.
- Heirung,T. A. N. – Foss,B. – Ydstie,B. E.: MPC-based dual control with online experiment design. Journal of Process Control, zv. 32, str. 64-76, 2015.
- Van Impe, Jan – Logist, Filip – Telen, Dries – Houska, Boris: Self-Reflective Model Predictive Control. SIAM Journal on Control and Optimization, č. 5, zv. 55, str. 2959-2980, 2017.
- La, Huu Chuong: Dual Control for Nonlinear Model Predictive Control, University of Heidelberg, Heidelberg, Germany, 2016.
- Bradford,E. – Imsland,L.: Stochastic NMPC of Batch Processes Using Parameterized Control Policies, zv. 44, 2018.
- Žáčeková, Eva: Identification for Model Predictive Control under Closed-loop Conditions, Czech Technical University in Prague, 2018.
- Bardow,A. – Schilling,J. – Wolff,L. – Pyschik,J. – Fleitmann,L.: Optimal experimental design of physical property measurements for optimal chemical process simulations. Fluid Phase Equilibria, zv. 557, str. 113420, 2022.
- Jaschke, J. – Skogestad, S. – Krishnamoorthy, D.: Multistage model predictive control with online scenario tree update using recursive Bayesian weighting. V 2019 18th European Control Conference, ECC 2019, str. 1443-1448, 2019.
- Hille, R. – Budman, H.M.: Experimental Design for Batch-to-Batch Optimization under Model-Plant Mismatch. Industrial and Engineering Chemistry Research, 2019.
- Walz, Olga – Djelassi, Hatim – Mitsos, Alexander: Optimal experimental design for optimal process design: A trilevel optimization formulation. Aiche Journal, č. 1, zv. 66, str. e16788, 2020.
- Walter Kähm: Thermal stability criteria embedded in advanced control systems for batch process intensification, University of Cambridge, University of Cambridge, 2019.
- Bitmead,R. R. – Bruggemann,S.: Surrogate problems for tractable excitation management in stochastic MPC. V Proceedings of the IEEE Conference on Decision and Control, str. 2562-2567, 2019.
- Fleitmann, L. – Pyschik, J. – Wolff, L. – Bardow, A.: Optimal physical property data for process simulations by optimal experimental design. Computer Aided Chemical Engineering, zv. 50, str. 851-857, 2021.
- Horvathova,M. – Ishihara,N. – Oravec,J. – Chida,Y.: Robust Setpoint Tracking of a Linear System with Discrete Actuators. V Proceedings of the 2021 23rd International Conference on Process Control, PC 2021, str. 229-236, 2021.
- Nolasco, E. – Vassiliadis, V.S. – Kähm, W. – Adloor, S.D. – Ismaili, R.A. – Conejeros, R. – Espaas, T. – Gangadharan, N. – Mappas, V. – Scott, F. – Zhang, Q.: Optimal control in chemical engineering: Past, present and future. Computers and Chemical Engineering, zv. 155, str. 107528, 2021.
- Zhang, Bopeng – Kotsalis, Georgios – Khan, Jahanzeb – Xiong, Zhaoyang – Igou, Thomas – Lan, Guanghui – Chen, Yongsheng: Backwash sequence optimization of a pilot-scale ultrafiltration membrane system using data-driven modeling for parameter forecasting. Journal of Membrane Science, zv. 612, str. 118464, 2020.
- Sob, P.B.: Performance improvement of a centrifugal pump filtration system for industrial and domestic applications. International Journal of Engineering Research and Technology, č. 8, zv. 13, str. 1840-1846, 2020.
- Gao, Yulan – Yang, Jie – Song, Xinwei – Shen, Dongmei – Wang, Wanfen – Zhang, Weimin – Jiang, Jichao: An experimental study on the use of a sequencing-batch membrane bioreactor (SBMBR) for the treatment of mixed municipal wastewater. Water Science and Technology, č. 6, zv. 83, str. 1459-1469, 2021.
- Lekalakala, T.S. – Sob, P.B. – Alugongo, A.A. – Tengen, T.B.: Improving the efficiency and stability of centrifugal pump filtration system using membrane system. V Proceedings of the International Conference on Industrial Engineering and Operations Management, str. 1581-1590, 2020.
- Cywińska-Antonik, Magdalena – Chen, Zhe – Groele, Barbara – Marszałek, Krystian: Application of Emerging Techniques in Reduction of the Sugar Content of Fruit Juice: Current Challenges and Future Perspectives. Foods, č. 6, zv. 12, str. 1181, 2023.
M. Jelemenský –
R. Paulen –
M. Fikar – Z. Kovacs:
Time-Optimal Control of Batch Multi-Component Diafiltration Processes. Editor(i): Jirí Jaromír Klemeš, Petar Sabev Varbanov, Peng Yen Liew, V
24th European Symposium on Computer Aided Process Engineering, Elsevier B.V, Radarweg 29, PO Box 211, 1000 AE Amsterdam, Netherlands, zv.
2014, str. 553–558, 2014.
- Deb, Tanmoy Kanti: Implementation of membrane processes for improvement of the detection of food contaminants, Universidade Nova de Lisboa, 2015.
- Faust, J.M.M. – Hamzehlou, S. – Leiza, J.R. – Asua, J.M. – Mhamdi, A. – Mitsos, A.: Dynamic optimization of a two-stage emulsion polymerization to obtain desired particle morphologies. Chemical Engineering Journal, zv. 359, str. 1035-1045, 2019.
- Faust, J.M.M. – Gerlinger, W. – Naeem, O. – Mhamdi, A. – Mitsos, A.: Inline Raman Spectroscopy of an Emulsion Copolymerization in an Industrial Pilot Plant Using Indirect Hard Modeling. Chemie-Ingenieur-Technik, 2021.
- Yu, Jie – Ma, Qingying – Fang, Xiaoyun – Li, Yanfei – Zhao, Linyi – Lu, Quanfang: Synthesis of styrene-acrylate emulsion by glow discharge electrolysis plasma and its application for the conservation of simulated disrupting murals in Dunhuang Mogao grottoes. Plasma Processes and Polymers, 2023.
- Krebs, Stefan – Schnurr, Christoph – Pfeifer, Martin – Weigold, Joerg – Hohmann, Soeren: Reduced-order hybrid interval observer for verified state estimation of an induction machine. Control Engineering Practice, zv. 57, str. 157-168, 2016.
- Steimel, Jochen – Engell, Sebastian: Optimization-Based Support for Process Design under Uncertainty: A Case Study. Aiche Journal, č. 9, zv. 62, str. 3404-3419, 2016.
- Krebs, Stefan – Pfeifer, Martin – Fugel, Sebastian – Weigold, Joerg – Hohmann, Soeren: Interval Observer for LPV Systems Based on Time-variant Transformations. V 2016 IEEE 55th Conference on Decision and Control (CDC), str. 4090-4096, 2016.
- Engell, Sebastian – Goerke, Thilo: Application of Evolutionary Algorithms in Guaranteed Parameter Estimation. V 2016 IEEE Congress on Evolutionary Computation (cec), str. 5100-5105, 2016.
- Hille,R. – Budman,H. M.: Simultaneous identification and optimization of biochemical processes under model-plant mismatch using output uncertainty bounds. Computers and Chemical Engineering, zv. 113, str. 125-138, 2018.
- Sheludko,A. S.: Approximation of the solution set for a system of nonlinear inequalities for modelling a one-dimensional chaotic process. Bulletin of the South Ural State University, Series: Mathematical Modelling, Programming and Computer Software, č. 1, zv. 11, str. 152-157, 2018.
- Sheludko, A.S.: Parameter Estimation for One-Dimensional Chaotic Systems by Guaranteed Algorithm and Particle Swarm Optimization. IFAC-PapersOnLine, č. 32, zv. 51, str. 337-342, 2018.
- Biegler,L. T. – Thierry,D. – Rodriguez,J. S. – Short,M. – Chen,W. – García-Muñoz,S. – Schenk,C.: Introducing KIPET: A novel open-source software package for kinetic parameter estimation from experimental datasets including spectra. Computers and Chemical Engineering, zv. 134, 2020.
- Khadanovich, D.V.: Guaranteed Estimation in the Problem of Transformer Windings DC Resistance Measuring. V Proceedings - 2021 3rd International Conference on Control Systems, Mathematical Modeling, Automation and Energy Efficiency, SUMMA 2021, str. 56-61, 2021.
- Shaqfa, M. – Beyer, K.: Pareto-like sequential sampling heuristic for global optimisation. Soft Computing, č. 14, zv. 25, str. 9077-9096, 2021.
- Shaqfa,M. – Beyer,K.: A virtual microstructure generator for 3D stone masonry walls. European Journal of Mechanics, A/Solids, zv. 96, str. 104656, 2022.
- Araromi, Dauda Olurotimi – Ajala, Olajide Olukayode – Sulayman, Aminah Abolore: Development of fuzzy-based autoregressive integrated moving average exogenous input model for filtration process. International Journal of Fuzzy Computation and Modelling, č. 1, zv. 3, str. 1–15, 2020.
- Wei, X. – Wang, S. – Shi, Y. – Xiang, H. – Chen, J.: Application of positively charged composite hollow-fiber nanofiltration membranes for dye purification. Industrial and Engineering Chemistry Research, č. 36, zv. 53, str. 14036-14045, 2014.
- Foley, G.: When should batch ultrafiltration be stopped to maximise profit in the recovery of a non-rejected solute?. Journal of Food Engineering, zv. 153, str. 8-11, 2014.
- Chaparro, Luis – Dhuique-Mayer, Claudie – Castillo, Soraya – Vaillant, Fabrice – Servent, Adrien – Dornier, Manuel: Concentration and purification of lycopene from watermelon juice by integrated microfiltration-based processes. Innovative Food Science & Emerging Technologies, č. A, zv. 37, str. 153-160, 2016.
- Naseri Rad, S. – Shirazi, M. M. A. – Marzban, R.: Application of Membrane Separation Technology in Downstream Processing of Bacillus thuringiensis Biopesticide: A Review. Journal of Membrane Science and Research, č. 2, zv. 2, str. 66-77, 2015.
- Chalova,V. I. – Silva,C. L. M. – Rustad,T. – Kalaydzhiev,H. – Ivanova,P.: Comparative biochemical profile of protein-rich products obtained from industrial rapeseed meal. Emirates Journal of Food and Agriculture, č. 3, zv. 29, str. 170-178, 2017.
- Chaparro, L. – Castillo, S. – Vaillant, F. – Servent, A. – Dornier, M.: Effect of microfiltration and diafiltration on carotenoid and aromatic compounds of watermelon juice (Citrullus lanatus L.) [Efecto de la microfiltración y diafiltración en el contenido de carotenoides y compuestos aromáticos del jugo de sandía (Citru. Bioagro, č. 3, zv. 29, str. 185-196, 2017.
- Kumar, V. – Kaistha, N.: Invariants for optimal operation of a reactor-separator-recycle process. Journal of Process Control, zv. 82, str. 1-12, 2019.
- Da, X. – Qi, T. – Zhang, Y. – Chen, X. – Cui, Z. – Qiu, M. – Fan, Y.: Modeling and optimal operation of intermittent feed diafiltration for refining oligodextran using nanoporous ceramic membranes. Separation and Purification Technology, zv. 253, str. 117491, 2020.
- Macbeth, A.J. – Lin, Z. – Goddard, J.M.: General method for emulsion polymerization to yield functional terpolymers. MethodsX, zv. 7, str. 101110, 2020.
- Averkin, D. V.: Synthesis of Particle Size Standards Based on Aqueous Suspensions of Polystyrene Latex Spheres. Measurement Techniques, č. 12, zv. 65, str. 936-941, 2023.
- Bondar, S. – Chabanova, O. – Sharakhmatova, T. – Trubnikova, A.: ANALYSIS OF A NEW DIAFILTRATION METHOD OF CLEANING BUTTERMILK FROM LACTOSE WITH MINERAL COMPOSITION PRESERVED. Journal of Food Science and Technology-ukraine, č. 1, zv. 12, str. 90-98, 2018.
- Buonomenna, M. G.: Membrane processes for a sustainable industrial growth. RSC Advances, č. 17, zv. 3, str. 5694-5740, 2013.
- Schlosser, Š.: Engineering Aspects of Food Biotechnology, Kapitola: Membrane filtration. CRC Press, str. 165-180, 2013.
- Sala, L. – Gautério, G.V. – Younan, F.F. – Brandelli, A. – Moraes, C.C. – Kalil, S.J.: Integration of ultrafiltration into an aqueous two-phase system in the keratinase purification. Process Biochemistry, č. 11, zv. 49, str. 2016-2024, 2014.
- Wang, L. – Yang, Z. – Wang, L. – Zhu, R.: Minimizing the operation time for continuous feed diafiltration processes under constant concentration ratio. Desalination, zv. 346, str. 100-106, 2014.
- Peixoto, C. – Nestola, P. – Carrondo, M. J. T. – Alves, P. M. – Schleuss, T. – Mota, J. P. B. – Martins, D. L. – Roederstein, S.: Evaluation of Novel Large Cut-Off Ultrafiltration Membranes for Adenovirus Serotype 5 (Ad5) Concentration. PLoS ONE, č. 12, zv. 9, str. e115802, 2014.
- Carrondo, M.J.T. – Mota, J.P.B. – Alves, P.M. – Silva, R.R.J.S. – Peixoto, C. – Nestola, P.: Improved virus purification processes for vaccines and gene therapy. Biotechnology and Bioengineering, č. 5, zv. 112, str. 843-857, 2015.
- Lutz H.: Ultrafiltration for Bioprocessing: Development and Implementation of Robust Processes, 2015.
- Nguyen, D. T. N. N. – Lameloise, M. -L. – Guiga, W. – Lewandowski, R. – Bouix, M. – Fargues, C.: Optimization and modeling of diananofiltration process for the detoxification of ligno-cellulosic hydrolysates - Study at pre-industrial scale. Journal of Membrane Science, zv. 512, str. 111-121, 2016.
- Saltik, M. Bahadir – Ozkan, Leyla – Jacobs, Marc – van der Padt, Albert: Dynamic modeling of ultrafiltration membranes for whey separation processes. Computers & Chemical Engineering, zv. 99, str. 280-295, 2017.
- Religaa, Pawel – Kazmierczak, Bernadetta: Desalination of chromium tannery wastewater by nanofiltration with different diafiltration mode. Desalination and Water Treatment, zv. 64, str. 409-413, 2017.
- Portugal, Carla A. M.: Control of Protein-Surface Interactions and Transport Properties: Functional Membranes and Operating Conditions. Current Organic Chemistry, č. 17, zv. 21, str. 1725-1739, 2017.
- Tavakolinaeini Ashkan: Large Scale Production, Purification, and Modification of Chitosan-based Complexes for Gene Therapy, Universite de Montreal, 2017.
- Pirrung, S.M. – Berends, C. – Backx, A.H. – van Beckhoven, R.F.W.C. – Eppink, M.H.M. – Ottens, M.: Model-based optimization of integrated purification sequences for biopharmaceuticals. Chemical Engineering Science: X, č. 100025, zv. 3, 2019.
- Kumar, V. – Kaistha, N.: Invariants for optimal operation of a reactor-separator-recycle process. Journal of Process Control, zv. 82, str. 1-12, 2019.
- Qi, T. – Da, X. – Zhang, Y. – Chen, X. – Cui, Z. – Qiu, M. – Fan, Y.: Modeling and optimal operation of intermittent feed diafiltration for refining oligodextran using nanoporous ceramic membranes. Separation and Purification Technology, zv. 253, str. 117491, 2020.
- Héctor José Ciro-Velásquez – José Uriel Sepúlveda-Valencia – Dario Jose Rincon Garcia: Evaluación del proceso de Diafiltración para la concentración de la proteína en el suero dulce de quesería. DYNA, zv. 87, str. 239-247, 2020.
- Briesen, H. – Kuhn, M.: Optimizing the axial resistance profile of submerged hollow fiber membranes. Processes, č. 1, zv. 9, str. 1-13, 2021.
- Qi,T. – Yang,D. – Chen,X. – Qiu,M. – Fan,Y.: Rapid removal of lactose for low-lactose milk by ceramic membranes. Separation and Purification Technology, zv. 289, str. 120601, 2022.
- Hidane, Takanori – Demura, Mikihide – Morisada, Shintaro – Ohto, Keisuke – Kawakita, Hidetaka: Efficient separation of phycocyanin of Nostoc commune by multistep diafiltration using ultra-filtration membrane modules. Bioprocess and Biosystems Engineering, č. 10, zv. 46, str. 1447 – 1456, 2023.
- Buonomenna, M. G.: Membrane processes for a sustainable industrial growth. RSC Advances, č. 17, zv. 3, str. 5694-5740, 2013.
- Zhao, L. – Zhao, H. – Nguyen, P. – Li, A. – Jiang, L. – Xia, Q. – Rong, Y. – Qiu, Y. – Zhou, J.: Separation performance of multi-components solution by membrane technology in continual diafiltration mode. Desalination, zv. 322, str. 113-120, 2013.
- Wang, L. – Wang, L. – Xing, W. – Xu, N.: Time-optimal diafiltration processes for Cephalosporin C separated from fermentation broth under constant yield and constant concentration. Separation and Purification Technology, zv. 122, str. 256-261, 2014.
- Wang, Longyao – Yang, Zhengdong – Wang, Lan – Zhu, Rongshun: Minimizing the operation time for continuous feed diafiltration processes under constant concentration ratio. Desalination, zv. 346, str. 100-106, 2014.
- Foley, G.: When should batch ultrafiltration be stopped to maximise profit in the recovery of a non-rejected solute?. Journal of Food Engineering, zv. 153, str. 8-11, 2014.
- Foley,G.: Membrane filtration: A problem solving approach with MATLAB, str. 1-327, 2011.
- Deb, Tanmoy Kanti: Implementation of membrane processes for improvement of the detection of food contaminants, Universidade Nova de Lisboa, 2015.
- Ambrosi, Alan – Al-Furaiji, Mustafa – McCutcheon, Jeffrey R. – Cardozo, Nilo Sergio M. – Tessaro, Isabel Cristina: Transport of Components in the Separation of Ethanol from Aqueous Dilute Solutions by Forward Osmosis. Industrial & Engineering Chemistry Research, č. 8, zv. 57, str. 2967-2975, 2018.
- Qiu, Y.-R. – Tang, S.-Y. – Xu, J.-Y.: Pretreatment of poly (acrylic acid) sodium by continuous diafiltration and time revolution of filtration potential [连续渗滤法预处理聚丙烯酸钠以及过滤电势随时间的变化]. Journal of Central South University, č. 3, zv. 26, str. 577-586, 2019.
- Pirrung, S.M. – Berends, C. – Backx, A.H. – van Beckhoven, R.F.W.C. – Eppink, M.H.M. – Ottens, M.: Model-based optimization of integrated purification sequences for biopharmaceuticals. Chemical Engineering Science: X, č. 100025, zv. 3, 2019.
- Varzakas, Theodoros: Centrifugation-Filtration. V Food Engineering Handbook, Food Process Engineering, str. 61-130, 2015.
- Briesen, H. – Kuhn, M.: Optimizing the axial resistance profile of submerged hollow fiber membranes. Processes, č. 1, zv. 9, str. 1-13, 2021.
- Worsham, Robert D. – Thomas, Vaughan – Farid, Suzanne S.: Impact of ethanol on continuous inline diafiltration of liposomal drug products. Biotechnology Journal, 2023.
- Field,R.: Diafiltration under condition of quasi-constant membrane surface concentration. Journal of Membrane Science, č. 1-2, zv. 383, str. 301-302, 2011.
- Wang, L. – Wang, L.: Estimation and control of process time for membrane separation of cephalosporin C from fermentation broth. Huagong Xuebao/CIESC Journal, č. 9, zv. 64, str. 3256-3261, 2013.
- Wang, L. – Wang, L. – Xing, W. – Xu, N.: Time-optimal diafiltration processes for Cephalosporin C separated from fermentation broth under constant yield and constant concentration. Separation and Purification Technology, zv. 122, str. 256-261, 2014.
- Prudêncio, E. S. – Müller, C. M. O. – Fritzen-Freire, C. B. – Amboni, R. D. M. C. – Petrus, J. C. C.: Effect of whey nanofiltration process combined with diafiltration on the rheological and physicochemical properties of ricotta cheese. Food Research International, zv. 56, str. 92-99, 2014.
- Lorenzi, R. – Raghunath, B. – Yanglin, M. – Karen, C.: Simulation of Process Performance on Contaminant Removal Using Constant and Non-Constant Volume Diafiltration Modeling.. BioProcessing Journal, č. 2, zv. 15, str. 37, 2016.
- Zhu, Yong – Bai, Zhishan – Luo, Wenqiang – Wang, Bingjie – Zhai, Linlin: A facile ion imprinted synthesis of selective biosorbent for Cu2+ via microfluidic technology. Journal of Chemical Technology and Biotechnology, č. 8, zv. 92, str. 2009-2022, 2017.
- Saltik, M. Bahadir – Ozkan, Leyla – Jacobs, Marc – van der Padt, Albert: Dynamic modeling of ultrafiltration membranes for whey separation processes. Computers & Chemical Engineering, zv. 99, str. 280-295, 2017.
- Gautério,G. V. – Malta,D. S. – Reginatto,L. – Feltrin,A. C. P. – Garda-Buffon,J. – Kalil,S. J.: Use of partially purified peroxidase of agricultural by-product rice bran in deoxynivalenol reduction. Journal of Chemical Technology and Biotechnology, č. 8, zv. 92, str. 1998-2008, 2017.
- Wen-qiong,W. – Yun-chao,W. – Xiao-feng,Z. – Rui-xia,G. – Mao-lin,L.: Whey protein membrane processing methods and membrane fouling mechanism analysis. Food Chemistry, zv. 289, str. 468-481, 2019.
- Pirrung, S.M. – Berends, C. – Backx, A.H. – van Beckhoven, R.F.W.C. – Eppink, M.H.M. – Ottens, M.: Model-based optimization of integrated purification sequences for biopharmaceuticals. Chemical Engineering Science: X, č. 100025, zv. 3, 2019.
- Silveira, Nauro – Silvestre, Wendel Paulo – Baldasso, Camila – Medeiros Cardozo, Nilo Sergio – Tessaro, Isabel Cristina – Vanin, Ana Paula: Ultrafiltration and diafiltration modeling for improved whey protein purification. Separation Science and Technology, 2022.
- Rathore, A.S. – Thori, S. – Thakur, G.: Implementing PAT for single-pass tangential flow ultrafiltration for continuous manufacturing of monoclonal antibodies. Journal of Membrane Science, zv. 613, str. 118492, 2020.
- Qi, T. – Da, X. – Zhang, Y. – Chen, X. – Cui, Z. – Qiu, M. – Fan, Y.: Modeling and optimal operation of intermittent feed diafiltration for refining oligodextran using nanoporous ceramic membranes. Separation and Purification Technology, zv. 253, str. 117491, 2020.
- Qi,T. – Yang,D. – Chen,X. – Qiu,M. – Fan,Y.: Rapid removal of lactose for low-lactose milk by ceramic membranes. Separation and Purification Technology, zv. 289, str. 120601, 2022.
- Schmitz, Fabian – Kruse, Thomas – Minceva, Mirjana – Kampmann, Markus: Integrated double flow-through purification of monoclonal antibodies using membrane adsorbers and single-pass tangential flow filtration. Biochemical Engineering Journal, zv. 195, str. 108913, 2023.
- Gil, I.D.: Modeling, Simulation, Dynamic Optimization and Control of a Semibatch Emulsion Polymerization Process, University of Lorraine, 2014.
- Nacerodien, Mogamat Thaabit: Investigation of Polymer Grade Blending in Ziegler-Natta Catalysed Ethylene Polymerisation Systems, University of Cape Town, 2014.
- Asdrúbal Antonio Ramírez Botero: Modeling, simulation, dynamic optimization and control of aplasma assisted reactive evaporation process forpreparationof Zinc Oxide (ZnO) thin films, Universidad Nacional de Colombia, 2020.
- Herrera, Andres A. – Raba, Bibiana – Rodriguez, Gerardo – Gil, Ivan D.: Dynamic optimization and experimental validation of a pilot scale emulsion polymerization reactor. Chemical Engineering and Processing-process Intensification, zv. 144, str. UNSP 107635, 2019.
- Gil, I.D. – Vargas, J.C. – Corriou, J.P.: Optimal nonlinear control of an industrial emulsion polymerization reactor. Chemical Engineering Research and Design, č. Supplment C, zv. 111, str. 63-82, 2016.
- Gil, I.D.: Modeling, Simulation, Dynamic Optimization and Control of a Semibatch Emulsion Polymerization Process, University of Lorraine, 2014.
- Bostik, Josef – Kukal, Jaromir – Macek, Karel: On Reinforcement Learning in Optimization Heuristics and Optimal Method Switching. V 16th International Conference on Soft Computing Mendel 2010, str. 22-28, 2010.